1
|
Wusiman M, Taghipour F. Molecularly imprinted fluorescence sensor chip for lactate measurement. MICROSYSTEMS & NANOENGINEERING 2024; 10:175. [PMID: 39582055 PMCID: PMC11586410 DOI: 10.1038/s41378-024-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 11/26/2024]
Abstract
Lactate measurements provide an opportunity to conveniently evaluate bodily functions and sports performance. A molecularly imprinted fluorescence biochip provides an innovative way to achieve lactate measurement and overcomes the limitations of enzyme-based sensors. To realize this goal, ZnO quantum dots (QDs), a biocompatible sensing material, were combined with selective receptors comprised of molecularly imprinted polymers (MIPs). The lactate-selective imprinted polymers were formed using 3-aminopropyltriethoxysilane (APTES) and 5-indolyl boronic acid monomers. Furthermore, a new solid-phase sensing platform that overcomes the limitations of liquid-based sensors was developed to detect lactate in real-time. The platform consists of the biosensor chip with a thin-film sensing layer, an ultraviolet (UV) excitation source, and a portable light detector. The final sensor has a sensitivity of 0.0217 mmol L-1 for 0-30 mmol L-1 of lactate in phosphate-buffered saline (PBS) with a correlation coefficient of 0.97. The high sensor sensitivity and selectivity demonstrates the applicability of the ZnO QDs and synthetic receptors for sweat analysis.
Collapse
Affiliation(s)
- Muersha Wusiman
- Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fariborz Taghipour
- Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Zhou Q, Wang X, Tang K, Chen Y, Wang R, Lei H, Yang Z, Zhang Z. Developing portable and controllable fluorescence capillary imprinted sensor for visual detection Crohn's disease biomarkers. Talanta 2024; 278:126402. [PMID: 38924985 DOI: 10.1016/j.talanta.2024.126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/25/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Simultaneous detection of multiple biomarker levels is essential to improve the accuracy of early diagnosis. Introducing capillary will simplify procedure, less time, and reduce reagent consumption for point-of-care testing of biomarkers. Here, we developed a portable and controllable smartphone-integrated fluorescence capillary imprinted sensing platform for the accuracy visual detection of Crohn's disease biomarkers (lysozyme, Fe3+) using single-excitation/double-signal detection. A novel controllable capillary coating strategy was developed by static gas-driven coating method for synthesis uniform fluorescence capillary imprinted sensor (Si-CD/g-CdTe@MIP capillary sensor). When Fe3+ and lysozyme were added, the fluorescence intensity of Si-CD/g-CdTe@MIP capillary sensor was quenched at 426 nm and enhanced at 546 nm, respectively. This Si-CD/g-CdTe@MIP capillary sensor has high sensitivity and selectivity for quantification lysozyme and Fe3+ simultaneously with the detection limit of 0.098 nM and 0.20 nM, respectively. In addition, the smartphone-integrated Si-CD/g-CdTe@MIP capillary sensor was applied for the intelligent detection of lysozyme and Fe3+, in which the detection limit was calculated as 0.32 nM and 0.65 nM. The smartphone-integrated visual Si-CD/g-CdTe@MIP capillary sensor realized ultrasensitive microanalysis (18 μL/time) of biomarkers in health man and Crohn 's patients, providing a novel strategy for early diagnosis of Crohn 's disease.
Collapse
Affiliation(s)
- Qin Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China; Ley Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou, 416000, PR China
| | - Xiangni Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China; Ley Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou, 416000, PR China
| | - Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China
| | - Ruoyan Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China; Ley Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou, 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, PR China; Ley Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou, 416000, PR China.
| |
Collapse
|
3
|
Frigoli M, Lowdon JW, Donetti N, Crapnell RD, Banks CE, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule ( S)- N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers. ACS OMEGA 2024; 9:36411-36420. [PMID: 39220512 PMCID: PMC11359617 DOI: 10.1021/acsomega.4c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is a multidrug-resistant Gram-negative bacterium that poses a significant threat to public health, necessitating rapid and on-site detection methods for rapid recognition. The goal of the project is therefore to indirectly detect the presence of P. aeruginosa in environmental water samples targeting one of its quorum-sensing molecules, namely, (S)-N-butyryl homoserine lactone (BHL). To this aim, molecularly imprinted polymers (MIPs) were synthesized via bulk free-radical polymerization using BHL as a template molecule. The obtained MIP particles were immobilized onto screen-printed electrodes (MIP-SPEs), and the BHL rebinding was analyzed via electrochemical impedance spectroscopy (EIS). To study the specificity of the synthesized MIPs, isotherm curves were built after on-point rebinding analysis performed via LC-MS measurements for both MIPs and NIPs (nonimprinted polymers, used as a negative control), obtaining an imprinting factor (IF) of 2.8 (at C f = 0.4 mM). The MIP-SPEs were integrated into an electrochemical biosensor with a linear range of 1 × 101-1 × 103 nM and a limit of detection (LoD) of 31.78 ± 4.08 nM. Selectivity measurements were also performed after choosing specific interferent molecules, such as structural analogs and potential interferents, followed by on-point analysis performed in spiked tap water to prove the sensor's potential to detect the presence of the quorum-sensing molecule in environmentally related real-life samples.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Joseph W. Lowdon
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Nicolas Donetti
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Robert D. Crapnell
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Craig E. Banks
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Thomas J. Cleij
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Hanne Diliën
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Kasper Eersels
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Bart van Grinsven
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
4
|
Jesuraj R, Perumal P. A highly effective peroxidase-mimic nanozyme of S, N-carbon dot-decorated cerium organic framework-based colorimetric detection of Hg 2+ ion and thiophanate methyl. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3562-3576. [PMID: 38780406 DOI: 10.1039/d4ay00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, we proposed a colorimetric probe as S, N-carbon dot-decorated Ce-MOF (S, N-CD@Ce-MOF) for the dual detection of mercury and thiophanate methyl (TM), which are simultaneously present pollutants in the environment and foodstuffs. These pollutants cause serious threats to human health, such as carcinogenicity and neurovirulence. Herein, we synthesized S, N-CD@Ce-MOF using the hydrothermal method and applied it to a "turn-off-on" probe to detect mercury and TM using the colorimetric method in water and food samples. S, N-CD@Ce-MOF shows excellent peroxidase activity by catalyzing the chromogenic substrate of 3,3',5,5'-tetramethylbenzidine (TMB), resulting in deep blue-colored oxidized TMB product (ox TMB) in the presence of H2O2 with a UV absorption wavelength at 654 nm. However, the addition of Hg(II) ions prohibits the oxidation of TMB by an electron transfer effect and easily binds with -S, -N-containing sites on the surface of carbon dots, obstructing the catalytic active sites and decreasing catalytic efficiency with weak UV absorption at 654 nm as a "turn-off". Subsequently, the addition of TM to the above sensing solution as a "turn-on" was triggered by the TM-Hg complex formation and permitted TMB oxidation with a strong absorption peak at 654 nm. Furthermore, this proposed sensor demonstrates a superior linear response to mercury ions and TM in the ranges from 0 to 15 μM and 0 to 14 μM, respectively. The developed colorimetric assay exhibits good sensitivity and selectivity against various possible interferences. Furthermore, we found that the limits of detection for Hg2+ and TM were as low as 0.01 μM and 0.03 μM, respectively. The developed sensor provides various benefits, such as cost-effectiveness, simplicity without a complex detection process, and naked-eye detection. Consequently, our proposed colorimetric technique worked well for the detection of Hg2+ in real water samples and TM in real apple and tomato juice.
Collapse
Affiliation(s)
- Rajakumari Jesuraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
5
|
Murugan K, Natarajan A. A novel N-CNDs/PAni modified molecular imprinted polymer for ultraselective and sensitive detection of ciprofloxacin in lentic ecosystems: a dual responsive optical sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3413-3429. [PMID: 38766762 DOI: 10.1039/d4ay00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The research study describes the development of a hybrid nanocomposite called nitro-doped carbon nanodots/polyaniline/molecularly imprinted polymer (N-CNDs/PAni/MIP). This composite is specifically engineered to function as a durable and flexible dual-response sensor to detect and analyze pharmaceutical organic contaminants (POCs). Powder X-Ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to perform an exhaustive structural and morphological analysis of N-CNDs/PAni/MIP. N-CNDs/PAni/MIP emitted blue luminescence under ultraviolet irradiation and exhibited typical excitation-dependent emission properties. It can act as fluorescent probe for the detection of CIPRO with high selectivity and sensitivity with an IF value of 4.2. Furthermore, N-CNDs/PAni/MIP exhibited high peroxidase-like catalytic behavior. After adding CIPRO to the N-CNDs/PAni/MIP/TMB/H2O2 system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on these two phenomena, with CIPRO as the target analyte, the N-CNDs/PAni/MIP dual sensor showed a minimal detection limit of 70 pM for the fluorescent signaling platform and 3.5 nM for the colorimetric probe with a linear range of 0.038-200 nM. The fluorometric and colorimetric assays based on N-CNDs/PAni/MIP for CIPRO detection were then successfully applied to lentic water as well as to tap water samples, demonstrating the sensitivity and dependability of the instrument. Furthermore, the synthesized PVA (N-CNDs/PAni/MIP) films enable the recognition of CIPRO, and these films have the potential to be integrated into portable sensing devices, providing a practical solution for rapid and on-site detection of CIPRO in various samples.
Collapse
Affiliation(s)
- Komal Murugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| | - Abirami Natarajan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| |
Collapse
|
6
|
Głosz K, Fabin M, Janasik P, Kołodziej W, Stolarczyk A, Jarosz T. The Failure of Molecular Imprinting in Conducting Polymers: A Case Study of Imprinting Picric Acid on Polycarbazole. SENSORS (BASEL, SWITZERLAND) 2024; 24:424. [PMID: 38257519 PMCID: PMC11154421 DOI: 10.3390/s24020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
The aims of this study were to investigate the potential of utilising molecularly imprinted polycarbazole layers to detect highly toxic picric acid (PA) and to provide information about their performance. Quantum chemical calculations showed that strong interactions occur between PA and carbazole (bond energy of approximately 31 kJ/mol), consistent with the theoretical requirements for effective molecular imprinting. The performance of the sensors, however, was found to be highly limited, with the observed imprinting factor values for polycarbazole (PCz) layers being 1.77 and 0.95 for layers deposited on Pt and glassy carbon (GC) electrodes, respectively. Moreover, the molecularly imprinted polymer (MIP) layers showed worse performance than unmodified Pt or GC electrodes, for which the lowest limit of detection (LOD) values were determined (LOD values of 0.09 mM and 0.26 mM, respectively, for bare Pt and MIP PCz/Pt, as well as values of 0.11 mM and 0.57 mM for bare GC and MIP PCz/GC). The MIP layers also showed limited selectivity and susceptibility to interfering agents. An initial hypothesis on the reasons for such performance was postulated based on the common properties of conjugated polymers.
Collapse
Affiliation(s)
- Karolina Głosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; (K.G.); (M.F.); (P.J.)
| | - Magdalena Fabin
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; (K.G.); (M.F.); (P.J.)
| | - Patryk Janasik
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; (K.G.); (M.F.); (P.J.)
| | - Weronika Kołodziej
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; (K.G.); (M.F.); (P.J.)
| | - Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; (K.G.); (M.F.); (P.J.)
| |
Collapse
|
7
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Rani, Ali F, Muhammad M, AlOthman ZA. Development of Fluorescent Co (II)-Integrated Carbon Dots and Their Application as a Off-On Mesotrione Detection Sensor. ACS OMEGA 2023; 8:49115-49128. [PMID: 38173863 PMCID: PMC10764113 DOI: 10.1021/acsomega.3c07171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
A very simple mesotrione-sensing medium with enhanced sensitivity detection limits has been proposed. A renovated hydrothermal method was adopted for synthesizing fluorescent carbon dots from ethylenediamine and glucose using a Teflon-lined simple autoclave in a GC oven. The resultant carbon dots were characterized via TEM, FTIR, UV-vis, particle size distribution, and EDX and evaluated in a fluorimeter as the sensing medium for mesotrione detection. The binding approach of the Co (II)-integrated glucose-bound carbon dots toward mesotrione is selective, making them an effective sensor for the real sample applications, where majority of the coexisting substances showed insignificant interference effect. Formation of the metastable state due to the molecular interaction between carbon dots and Co (II) resulted in fluorescence quenching at 456 nm. Enhancement in the fluorescence intensity occurred when mesotrione was added in the concentration range of 0.2-5.0 μg mL-1, with a limit of detection, limit of quantification, standard deviation, and relative standard deviation of 0.054, 0.164, 0.00082 μg mL-1, and 0.682%, respectively. Mesotrione determination was demonstrated in soil, water, and tomato samples with recoveries in the range of 95.38-104.7%. The selectivity of the sensor was found to be good enough when checked for the complex tomato sample spiked with different pesticides of the triketone family having structural similarities to mesotrione.
Collapse
Affiliation(s)
- Rani
- Department
of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Faiz Ali
- Department
of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Mian Muhammad
- Department
of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Zeid A. AlOthman
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Gupta A, Kaur S, Singh H, Garg S, Kumar A, Malhotra E. Quantum dots: a tool for the detection of explosives/nitro derivatives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6362-6376. [PMID: 37975188 DOI: 10.1039/d3ay01566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nitro derivatives are considered as major environmental pollutants and issues of health concern. In current times, a variety of methods and techniques have been utilized for the sensing of these nitro derivatives. In view of this, the remarkable fluorescence properties of quantum dots (QDs) provide a great opportunity to detect these nitro derivatives. This review highlighted the recent reports of QDs as the sensing material for these nitro derivative explosives. Different modifications in QDs using physical and chemical approaches can be used to improve their sensing output. Various interaction mechanisms have been discussed between QDs and nitro derivatives to change their fluorescence properties. Finally, the current challenges and the perspective for the forthcoming future are provided in the concluding section. We hope this review will be beneficial in guiding the utilization of QDs in sensing applications.
Collapse
Affiliation(s)
- Ankush Gupta
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| | - Sharanjeet Kaur
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| | - Harminder Singh
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| | - Shelly Garg
- Department of Mathematics, DAV University, Jalandhar 144012, Punjab, India
| | - Akshay Kumar
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Jammu 181143, India
| | - Ekta Malhotra
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| |
Collapse
|
10
|
Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and Polymer-Based Materials for the Detection of (Nitro-)explosives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6333. [PMID: 37763611 PMCID: PMC10532833 DOI: 10.3390/ma16186333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Methods for the remote detection of warfare agents and explosives have been in high demand in recent times. Among the several detection methods, fluorescence methods appear to be more convenient due to their low cost, simple operation, fast response time, and naked-eye-visible sensory response. For fluorescence methods, a large variety of fluorescent materials, such as small-molecule-based fluorophores, aggregation-induced emission fluorophores/materials, and supramolecular systems, have been reported in the literature. Among them, fluorescent (bio)polymers/(bio)polymer-based materials have gained wide attention due to their excellent mechanical properties and sensory performance, their ability to recognize explosives via different sensing mechanisms and their combinations, and, finally, the so-called amplification of the sensory response. This review provides the most up-to-date data on the utilization of polymers and polymer-based materials for the detection of nitroaromatic compounds (NACs)/nitro-explosives (NEs) in the last decade. The literature data have been arranged depending on the polymer type and/or sensory mechanism.
Collapse
Affiliation(s)
- Olga S. Taniya
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Leila K. Sadieva
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
AlZahrani YM, Alharthi S, AlGhamdi HA, Youssef AO, Ahmed SS, Mohamed EH, Mahmoud SA, Attia MS. Highly selective optical sensor N/S-doped carbon quantum dots (CQDs) for the assessment of human chorionic gonadotropin β-hCG in the serum of breast and prostate cancer patients. RSC Adv 2023; 13:21318-21326. [PMID: 37465571 PMCID: PMC10350636 DOI: 10.1039/d3ra01570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
A low-cost, accurate, and highly selective method was used for the assessment of the human chorionic gonadotropin β-hCG in the serum of breast and prostate cancer patients. This method is based on enhancing the intensity of luminescence displayed by the optical sensor N/S-doped carbon dots (CQDs) upon adding different concentrations of β-hCG. The luminescent optical sensor was synthesized and characterized through absorption and emission and is tailored to present blue luminescence at λem = 345 nm and λex = 288 nm at pH 7.8 in DMSO. The enhancement of the luminescence intensity of the N/S-doped CQDs, especially, the characteristic band at λem = 345 nm, is typically used for determining β-hCG in different serum samples. The dynamic range is 1.35-22.95 mU mL-1, and the limit of detection (LOD) and quantitation limit of detection (LOQ) are 0.235 and 0.670 mU mL-1, respectively. This method was practical, simple, and relatively free from interference effect. It was successfully applied to measure PCT in the samples of human serum, and from this method, we can assess some biomarkers of cancer-related diseases in human body.
Collapse
Affiliation(s)
- Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 31441 Dammam Saudi Arabia
| | - A O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | - Shahenda S Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | - Ekram H Mohamed
- Analytical Chemistry Department, The British University in Egypt El Sherouk City Cairo 11378 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| |
Collapse
|
12
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
13
|
High sensitive fluorescent sensing and photocatalytic degradation performance of two-dimensional Tb-organic network. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Jiang S, Wang T, Behren S, Westerlind U, Gawlitza K, Persson JL, Rurack K. Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core-Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells. ACS APPLIED NANO MATERIALS 2022; 5:17592-17605. [PMID: 36583127 PMCID: PMC9791662 DOI: 10.1021/acsanm.2c03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core-fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes.
Collapse
Affiliation(s)
- Shan Jiang
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| | - Tianyan Wang
- Department
of Molecular Biology, Umeå University, S-901 87Umeå, Sweden
| | - Sandra Behren
- Department
of Chemistry, Umeå University, S-901 87Umeå, Sweden
| | | | - Kornelia Gawlitza
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| | - Jenny L. Persson
- Department
of Molecular Biology, Umeå University, S-901 87Umeå, Sweden
- Division
of Experimental Cancer Research, Department of Translational Medicine,
Clinical Research Centre, Lund University, S-214 28Malmö, Sweden
| | - Knut Rurack
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| |
Collapse
|
15
|
Kumar JV, Kavitha G, Albasher G, Sajjad M, Arulmozhi R, Komal M, Nivetha MS, Abirami N. Multiplex heteroatoms doped carbon nano dots with enhanced catalytic reduction of ionic dyes and QR code security label for anti-spurious applications. CHEMOSPHERE 2022; 307:136003. [PMID: 35987265 DOI: 10.1016/j.chemosphere.2022.136003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, a simple hydrothermal approach was used to make multiplex heteroatoms doped carbon dots from Tinospora cordifolia miers plant extract. Their ability to the catalytic activity of dyes and anti-spurious applications was evaluated. The formation of NBCNDs and source of (T. cordifolia miers) study the optical properties, and functional groups are investigated using UV-Visible spectroscopy and FT-IR techniques. The synthesized NBCNDs structure and elemental compositions were examined via HR-TEM, XRD, and XPS, respectively. According to the HRTEM images, the average particle size of the NBCNDs was around 4.3± 1 nm, with d-spacing of 0.19 nm. The obtained NBCNDs were exposed under 395 nm UV light to emit bluish-green tuneable fluorescence with QY (quantum yield) of 23.7%. The prepared NBCNDs as a potential catalyst for the AYR and CV dye reduction process using freshly prepared NaBH4, with determined rate constant values at 0.1220 and 0.1521 min-1, respectively. Lastly, we constructed a quick response (QR) code security label for anti-spurious applications using stencil techniques. The "confidential info" was encrypted using a QR code digital system, and the decryption was read using a smartphone under 365 nm light irradiation.
Collapse
Affiliation(s)
- J Vinoth Kumar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - G Kavitha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - R Arulmozhi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - M Komal
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - M Sherlin Nivetha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - N Abirami
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
16
|
Selvakumar T, Rajaram M, Natarajan A, Harikrishnan L, Alwar K, Rajaram A. Highly Efficient Sulfur and Nitrogen Codoped Graphene Quantum Dots as a Metal-Free Green Photocatalyst for Photocatalysis and Fluorescent Ink Applications. ACS OMEGA 2022; 7:12825-12834. [PMID: 35474775 PMCID: PMC9026095 DOI: 10.1021/acsomega.2c00092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 05/27/2023]
Abstract
The demand for modern organic pollutant treatment has prompted the development of environmentally acceptable photocatalytic processes. In this work, we report novel nitrogen and sulfur codoped graphene quantum dot (S,N-GQD) based photocatalysts and fluorescent ink for the first time. For the degradation of organic dyes under visible irradiation, a hydrothermal technique was employed to generate S,N-GQD green nanomaterials. The synthesized samples were examined using XRD, HR-TEM, EDX, FT-IR, PL, and UV-vis spectroscopy. UV-DRS was used to determine the energy band gap of S,N-GQDs, and it was obtained to be around ∼2.54 eV. To explore the catalytic behavior of the produced S,N-GQDs as green nanomaterials, organic dyes (i.e., crystal violet and Alizarin yellow) have been used as a reference dye in this study. Using several radical scavenging agents, the photocatalytic mechanism was examined. This novel photocatalyst offers a promising alternative for the breakdown of organic pollutants. Moreover, these S,N-GQDs can also be used as fluorescent ink for imaging purposes and security reasons.
Collapse
Affiliation(s)
- Tamizharasan Selvakumar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Tamil Nadu, India
| | - Muralidharan Rajaram
- Department
of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, India
| | - Abirami Natarajan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Tamil Nadu, India
| | - Leelavathi Harikrishnan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Tamil Nadu, India
| | - Kumarasamy Alwar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Tamil Nadu, India
| | - Arulmozhi Rajaram
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Tamil Nadu, India
| |
Collapse
|
17
|
j VK, Velusamy A, Arulmozhi R, Abirami N. Boron doped Fluorescent Carbon Nano Dots for reduction of ionic dyes and as Encryption and decryption QR code labels. NEW J CHEM 2022. [DOI: 10.1039/d2nj00786j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work discusses the synthesis of fluorescent undoped and boron-doped carbon nanodots (BDCNDs) by a simple hydrothermal approach using Tribulus terretris as carbon precursor and boric acid as boron source....
Collapse
|