1
|
Lima RG, Flores RS, Miessi G, Pulcherio JHV, Aguilera LF, Araujo LO, Oliveira SL, Caires ARL. Determination of Photosensitizing Potential of Lapachol for Photodynamic Inactivation of Bacteria. Molecules 2024; 29:5184. [PMID: 39519826 PMCID: PMC11547567 DOI: 10.3390/molecules29215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to combat drug-resistant bacteria. This study explores the potential of lapachol, a natural naphthoquinone derived from Tabebuia avellanedae, as a photosensitizer (PS) for aPDI. Lapachol's photosensitizing properties were evaluated using Staphylococcus aureus and Escherichia coli strains under blue LED light (450 nm). UV-vis spectroscopy confirmed lapachol's absorption peak at 482 nm, aligning with effective excitation wavelengths for phototherapy. Photoinactivation assays demonstrated significant bacterial growth inhibition, achieving complete eradication of S. aureus at 25 µg·mL-1 under light exposure. Scanning electron microscopy (SEM) revealed morphological damage in irradiated bacterial cells, confirming lapachol's bactericidal effect. This research underscores lapachol's potential as a novel photosensitizer in antimicrobial photodynamic therapy, addressing a critical need in combating antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anderson R. L. Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, P.O. Box 549, 79070-900 Campo Grande, MS, Brazil; (R.G.L.); (R.S.F.); (G.M.); (J.H.V.P.); (L.F.A.); (L.O.A.); (S.L.O.)
| |
Collapse
|
2
|
Liška V, Willimetz R, Kubát P, Křtěnová P, Gyepes R, Mosinger J. Synergistic photogeneration of nitric oxide and singlet oxygen by nanofiber membranes via blue and/or red-light irradiation: Strong antibacterial action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112906. [PMID: 38688040 DOI: 10.1016/j.jphotobiol.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Willimetz
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Gyepes
- Department of Chemistry, Faculty of Education of J. Selye University, Bratislavská 3322, 945 01 Komárno, Slovak Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
3
|
Li Q, Wang M, Belén Fernández M, Sagymbek A, Dong Y, Gao Y, Yu X. Indication of the color change on the oxidation properties of fragrant rapeseed oil during shelf storage. Food Chem X 2023; 20:100908. [PMID: 38144869 PMCID: PMC10740093 DOI: 10.1016/j.fochx.2023.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
The cause and trend of color change and their links to oxidative properties were investigated by simulating shelf storage conditions for fragrant rapeseed oils (FROs). Under illumination, the L* value gradually increased with the storage time. The a* and b* values showed different trends depending on brands. The photodegradation rates of chlorophylls were 8.6 ∼ 15 times higher than those of carotenoids. The change in color of FROs was mainly caused by the light-induced photodegradation of chlorophyll. Compared with the hydroperoxides, the contents of some secondary oxidation products [i.e., 2-butenal, octane, (Z)-2-octene, 2,4-octadiene, (Z)-2-heptenal, (E, E)-2,4-heptadienal, and (E)-2-decenal] were more closely associated with the color variation with correlation coefficients of 0.6 ∼ 0.94. Significant negative correlation was found between α-tocopherol content and oil color difference. Therefore, illumination was the main reason for the color degradation of the FROs. The varying degree of color difference was strongly linked to the quality deterioration caused by oxidation.
Collapse
Affiliation(s)
- Qi Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Mengmeng Wang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - María Belén Fernández
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. Del Valle 5737, Olavarría, Buenos Aires, Argentina
| | - Altayuly Sagymbek
- Saken Seifullin Kazakh Agrotechnical University, Department of Food Science, Astana, Kazakhstan
| | - Yaoyao Dong
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
4
|
Liška V, Kubát P, Křtěnová P, Mosinger J. Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications. ACS OMEGA 2022; 7:47986-47995. [PMID: 36591212 PMCID: PMC9798731 DOI: 10.1021/acsomega.2c05935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
We have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-Fe2O3) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties. This hybrid material allows for remote manipulation by a magnetic field, even in hazardous and/or highly microbial contaminant environments.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| |
Collapse
|