1
|
Jaisankar E, Azarudeen RS, Thirumarimurugan M. Nanofibers Embedded with Nanoparticles as Carriers for the Controlled Release of Anticancer Drug: Promoting the Apoptosis of Breast Cancer Cell Line and Growth Inhibition of Microbial Strains. ACS APPLIED BIO MATERIALS 2024; 7:4323-4338. [PMID: 38867473 DOI: 10.1021/acsabm.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.
Collapse
Affiliation(s)
- Edumpan Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | - Raja Sulaiman Azarudeen
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | | |
Collapse
|
2
|
Wu P, Wang X, Yin M, Zhu W, Chen Z, Zhang Y, Jiang Z, Shi L, Zhu Q. ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells. Int J Nanomedicine 2024; 19:4465-4493. [PMID: 38779103 PMCID: PMC11110815 DOI: 10.2147/ijn.s443117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 μg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.
Collapse
Affiliation(s)
- Peng Wu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoyong Wang
- The People’s Hospital of Rugao, Nantong, People’s Republic of China
| | - Min Yin
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenjie Zhu
- Kangda College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng Chen
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Qiang Zhu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Kar B, Rout SR, Halder J, Mahanty R, Mishra A, Saha I, Rajwar TK, Dash P, Das C, Pradhan D, Rai VK, Ghosh G, Rath G. The Recent Development of Luteolin-loaded Nanocarrier in Targeting Cancer. Curr Pharm Des 2024; 30:2129-2141. [PMID: 38963114 DOI: 10.2174/0113816128313713240628063301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 μg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.
Collapse
Affiliation(s)
- Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Sudhanshu Ranjan Rout
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
4
|
Usman F, Farooq M, Wani TA, Ahmad H, Javed I, Iqbal M, Sheikh FA, Siddique F, Zargar S, Sheikh S. Itraconazole Loaded Biosurfactin Micelles with Enhanced Antifungal Activity: Fabrication, Evaluation and Molecular Simulation. Antibiotics (Basel) 2023; 12:1550. [PMID: 37887251 PMCID: PMC10604259 DOI: 10.3390/antibiotics12101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Itraconazole (ITZ) is a broad-spectrum antifungal for superficial subcutaneous and systemic fungal infections. This study aimed to enhance the antifungal activity of ITZ using surfactin A (SA), a cyclic lipopeptide produced by the SA-producing Bacillus strain NH-100, possessing strong antifungal activity. SA was extracted, and ITZ-loaded SA micelles formulations were prepared via a single-pot rinsing method and characterized by particle size, zeta potential, and infrared spectroscopy. In vitro dissolution at pH 1.2, as well as hemolysis studies, was also carried out. The fabricated formulations were stable and non-spherical in shape, with an average size of about 179 nm, and FTIR spectra depicted no chemical interaction among formulation components. ITZ-loaded micelles showed decreased hemolysis activity in comparison to pure ITZ. The drug released followed the Korsmeyer-Peppas model, having R2 0.98 with the diffusion release mechanism. In an acidic buffer, drug release of all prepared formulations was in the range of 73-89% in 2 h. The molecular simulation showed the outstanding binding and stability profile of the ITZ-SA complex. The aromatic ring of the ITZ mediates a π-alkyl contact with a side chain in the SA. It can be concluded that ITZ-loaded micelles, owing to significant enhanced antifungal activity up to 6-fold due to the synergistic effect of SA, can be a promising drug delivery platform for delivery of poorly soluble ITZ.
Collapse
Affiliation(s)
- Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Mudassir Farooq
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hassan Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, 1-Khayaban.e. Jinnah Road, Johar Town, Lahore 54000, Pakistan;
| | - Ibrahim Javed
- Center for Pharmaceutical Innovation, Clinical and Health Sciences, The University of South Australia, North Terrace, Adelaide 5000, Australia;
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan;
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan;
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Seema Zargar
- Department of Biochemistry, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Saleh Sheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan;
| |
Collapse
|
5
|
Zhang Y, Wu X, Xu X, Zhang M, Liu L, Wu J, Xie D, Song S. Nanosized Assemblies from Amphiphilic Solanesol Derivatives for Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3875-3888. [PMID: 37622987 DOI: 10.1021/acsabm.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Unexpected functionalities of pharmaceutical excipients have been found in some cases. Preplanned introduction of excipients with therapeutic effects might not only reduce the risks of metabolism-related toxicity but also provide synergistic therapeutic effects. Herein, natural original solanesol (SOL), one of the isoprene compounds with some pharmacological activities, was selected to prepare a series of amphiphilic derivatives by chemical modification, and drug delivery systems for oncotherapy were established. Three derivatives, including solanesyl bromide (SOL-Br), monosolanesolsolanesyl succinate (MSS), and solanesylthiosalicylate (STS), were synthesized and formulated into nanosized self-assemblies for doxorubicin (DOX) encapsulation. Meanwhile, polyethylene glycol (PEG) derivatives were synthesized as the stabilizer of solanesol-based self-assemblies, among which hydrazine-poly(ethylene glycol)-hydrazine (PEG6000-DiHZ) was found to be more reliable. The optimized molar ratio between PEG6000-DiHZ and solanesol derivatives was found to be 2:1, considering the drug-loading capacity of self-assemblies. Consistent release profiles were found for the DOX-loaded self-assemblies, in which about 75-80% DOX was cumulatively released within 60 h at pH 5.0. The three DOX-loaded self-assemblies were found to be homogeneous spheres with average particle sizes in the range of 100-200 nm by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Blank self-assemblies were found to have an inhibiting ability toward MCF-7 and HepG-2 cancer cells, which might originate from the inherent nature of solanesol derivatives. In vivo pharmacodynamic experiments demonstrated that blank self-assemblies had certain inhibitory effect on tumor growth compared with the controls. Further enhanced effects were also found for the drug-loaded self-assemblies due to the synergistic anti-tumor effect existing between the drug and the carriers. This work has presented a simple and effective strategy to prepare a therapeutic carrier by direct assembling of the therapeutic compound without PEGylation steps, by which the therapeutic carrier materials could take their effect directly and synergistically along with the loaded drugs.
Collapse
Affiliation(s)
- Yanan Zhang
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaohe Wu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xu Xu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Mengke Zhang
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Liu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinhong Wu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Dongshun Xie
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shiyong Song
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
7
|
Koniuch N, Ilett M, Collins SM, Hondow N, Brown A, Hughes L, Blade H. Structure of polymeric nanoparticles encapsulating a drug - pamoic acid ion pair by scanning transmission electron microscopy. Heliyon 2023; 9:e16959. [PMID: 37360079 PMCID: PMC10285183 DOI: 10.1016/j.heliyon.2023.e16959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Drug-delivery systems based on polymeric nanoparticles are useful for improving drug bioavailability and/or delivery of the active ingredient for example directly to the cancerous tumour. The physical and chemical characterization of a functionalized nanoparticle system is required to measure drug loading and dispersion but also to understand and model the rate and extent of drug release to help predict performance. Many techniques can be used, however, difficulties related to structure determination and identifying the precise location of the drug fraction make mathematical prediction complex and in many published examples the final conclusions are based on assumptions regarding an expected structure. Cryogenic scanning transmission electron microscopy imaging in combination with electron energy loss spectroscopy techniques are used here to address this issue and provide a multi-modal approach to the characterisation of a self-assembled polymeric nanoparticle system based upon a polylactic acid - polyethylene glycol (PLA-PEG) block copolymer containing a hydrophobic ion-pair between pamoic acid and an active pharmaceutical ingredient (API). Results indicate a regular dispersion of spherical nanoparticles of 88 ± 9 nm diameter. The particles are shown to have a multi-layer structure consisting of a 25 nm radius hydrophobic core of PLA and pamoic acid-API material with additional enrichment of the pamoic acid-API material within the inner core (that can be off-centre), surrounded by a 9 nm dense PLA-PEG layer all with a low-density PEG surface coating of around 10 nm thickness. This structure suggests that release of the API can only occur by diffusion through or degradation of the dense, 9 nm thick PLA-PEG layer either of which is a process consistent with the previously reported steady release kinetics of the API and counter ion from these nanoparticle formulations. Establishing accurate measures of product structure enables a link to performance by providing appropriate physical parameters for future mathematical modelling of barriers controlling API release in these nanoparticle formulations.
Collapse
Affiliation(s)
- Natalia Koniuch
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sean M. Collins
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Andy Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Les Hughes
- AstraZeneca, Oral Product Development, Pharmaceutical Technology & Development, Operations, Macclesfield, SK10 2NA, United Kingdom
| | - Helen Blade
- AstraZeneca, Oral Product Development, Pharmaceutical Technology & Development, Operations, Macclesfield, SK10 2NA, United Kingdom
| |
Collapse
|
8
|
Parvathaneni V, Shukla SK, Gupta V. Development and Characterization of Folic Acid-Conjugated Amodiaquine-Loaded Nanoparticles-Efficacy in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15031001. [PMID: 36986861 PMCID: PMC10053199 DOI: 10.3390/pharmaceutics15031001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The objective of this study was to construct amodiaquine-loaded, folic acid-conjugated polymeric nanoparticles (FA-AQ NPs) to treat cancer that could be scaled to commercial production. In this study, folic acid (FA) was conjugated with a PLGA polymer followed by the formulation of drug-loaded NPs. The results of the conjugation efficiency confirmed the conjugation of FA with PLGA. The developed folic acid-conjugated nanoparticles demonstrated uniform particle size distributions and had visible spherical shapes under transmission electron microscopy. The cellular uptake results suggested that FA modification could enhance the cellular internalization of nanoparticulate systems in non-small cell lung cancer, cervical, and breast cancer cell types. Furthermore, cytotoxicity studies showed the superior efficacy of FA-AQ NPs in different cancer cells such as MDAMB-231 and HeLA. FA-AQ NPs had better anti-tumor abilities demonstrated via 3D spheroid cell culture studies. Therefore, FA-AQ NPs could be a promising drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
9
|
Zhai BT, Sun J, Shi YJ, Zhang XF, Zou JB, Cheng JX, Fan Y, Guo DY, Tian H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J Nanobiotechnology 2022; 20:509. [DOI: 10.1186/s12951-022-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractNorcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
Graphical Abstract
Collapse
|
10
|
de Andrade CJ, Coelho AL, Feuser PE, de Andrade LM, Carciofi BA, de Oliveira D. Mannosylerythritol lipids: production, downstream processing, and potential applications. Curr Opin Biotechnol 2022; 77:102769. [PMID: 35985133 DOI: 10.1016/j.copbio.2022.102769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022]
Abstract
Mannosylerythritol lipids (MELs) are biosurfactants produced by various fungal species. Depending on the degree of acetylation and further chemical modifications, these glycolipids can show remarkable biological properties, including the increase of water retention in the stratum corneum suppression of melanogenic enzymes tyrosinase-1 and -2, reversion of UV-A radiation-induced aquaporin-3 suppression, skin whitening, and anti-aging effects. These applications of MELs require high purity, which is usually reached by liquid-liquid extraction followed by chromatography, obtaining ≥95% purity. This worked aimed to critically discuss the current state of the art and trends on the production of MELs, including post-production treatment as enzymatic conversion. In addition, their application as skincare or pharmaceutical agents and agricultural biostimulants.
Collapse
Affiliation(s)
- Cristiano J de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Ana Ls Coelho
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Paulo E Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lidiane M de Andrade
- Department of Chemical Engineering of the Polytechnic School, University of São Paulo, São Paulo, SP 05508-010, Brazil
| | - Bruno Am Carciofi
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|