1
|
Murugaperumal P, Nallathambi S. A comprehensive review on colorimetric and fluorometric investigations of dual sensing chemosensors for Cu 2+ and Fe 3+ ions from the year 2017 to 2023. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125193. [PMID: 39340942 DOI: 10.1016/j.saa.2024.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Dual sensing chemosensors for copper(II) and iron(III) ions are molecules or compounds designed to selectively detect and differentiate between these specific metal ions. Because metal ions like copper(II) and iron(III) are essential to so many industrial, biological, and environmental processes, their detection and measurement have become increasingly important. In this work, a novel dual-sensing chemosensor that combines high selectivity and sensitivity is presented. It is intended to detect copper(II) (Cu2+) and iron (III)(Fe3+) ions concurrently. The chemosensor combines two different recognition components into one platform and achieves dual-mode detection by combining optical and electrochemical sensing approaches. Using a dual sensing chemosensors for two cations can save money and time compared to preparing two separate chemosensors to sense each of those cations separately. We often use various techniques, including spectroscopy, fluorescence, and electrochemistry, to monitor and measure the changes induced by the interaction between the chemosensors and the metal ions. Discussions have been held on the excitation and emission wavelengths, media used in the spectroscopic measurements, binding constant with coordination binding mode, detection mechanism, and detection limit (LOD). This extensive review paper investigates colorimetric and fluorometric dual sensing analysis for Cu2+ and Fe3+ ions which includes more than sixty papers from the year of 2017 to 2023.
Collapse
Affiliation(s)
| | - Sengottuvelan Nallathambi
- Department of Chemistry, Centre for Distance and Online Education (CDOE), Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
2
|
Klaimanee E, Temram T, Ratanaphan A, Saithong S, Sooksawat D, Samphao A, Yakiyama Y, Sakurai H, Konno T, Tantirungrotechai Y, Choojun K, Leesakul N. Iridium(III) coordination compounds based on organophosphorus ancillary ligands showing cytotoxicity against breast cancer cells and Fe(III) luminescent sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125150. [PMID: 39305800 DOI: 10.1016/j.saa.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/10/2024]
Abstract
Three phosphorescent iridium(III) complexes consisting bis-diphosphine ligands were prepared and characterized by single-crystal XRD, CHN analysis, spectroscopic techniques, cyclic voltammetry, and DFT. The synthesized complexes were the three monomeric [Ir(ppy)2(L1)Cl] (1), [Ir(ppy)2(L2)]Cl (2) and [Ir(ppy)2(L3)]Cl (3) where L1 = bis-(diphenylphosphino)methane (dppm), L2 = bis-(diphenylphosphino)propane (dppp) and L3 = bis-(diphenylphosphino)benzene (dppbe). Complexes 1-3 gave an absorption band between 240 to 380 nm in both CH2Cl2 and DMSO, which is assigned as a charge transfer transition based on theoretical calculation. They showed a blue-green emission at 460-520 nm in DMSO with an absolute quantum efficiency of 0.013-0.046 at room temperature. The selective photo-induced electron transfer (PET) by Fe3+ in DMSO, was studied to obey the Rehm-Weller principle. The 1:1 binding soichiometry between 1-3 and Fe3+ was established by Job's plot. The binding constants (Ka) were determined using the Benesi-Hildebrand plot. All the complexes are extremely more potent than cisplatin for in vitro antiproliferative activity towards the human breast cancer cells, HCC1937, MCF-7, and MDA-MB-231. The values of IC50 were in the range of 0.077-0.485 μM, and 1 exhibited the most effective IC50 against MDA-MB-231 cell line, the triple-negative breast cancer cell. Their lipophilicities (log P) were also examined to explain the penetration ability of the studied complexes towards cell barriers, and transport to the molecular target.
Collapse
Affiliation(s)
- Ekkapong Klaimanee
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Thitirat Temram
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Adisorn Ratanaphan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Dhassida Sooksawat
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani, 34190, Thailand
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yuthana Tantirungrotechai
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application and Division of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Kittisak Choojun
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Nararak Leesakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
3
|
Sharif S, Shahbaz M, Şahin O, Khurshid MA, Anbar MM, Dar B. Synthesis, Crystal Structure and Fluorimetric Study of 2-phenylphthalazin-1(2H)-one: a Highly Selective Florescent Chemosensor for Detection of Fe 3+ and Fe 2+ Metal Ions. J Fluoresc 2024; 34:2783-2791. [PMID: 37910270 DOI: 10.1007/s10895-023-03484-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
A ligand, 2-phenylphthalazin-1(2H)-one (K), was synthesized by refluxing 2-formylbenzoic acid with phenyl hydrazine in presence of ethanol. FTIR, elemental analysis and single crystal XRD techniques were used to elucidate the structure. Fluorimetric turn-off response was recorded when solution of ligand (K) in DMF was treated with aqueous solution of Fe3+ and Fe2+ metal ions. No specific changes were observed on addition of other metal ions (Pb2+, Cd2+, Mn2+, Zn2+, Ba2+, Ni2+, Al3+, Ag1+, Co2+, Ca2+, Cu2+, Mg2+, Cr3+). Limit of Detection (LOD) was calculated for Fe2 and Fe3+as 2.4 µM and 2.5µM respectively, which is quite below to the recommended value 5.4 µM of the Environment Protection Agency of USA. Association constants for Fe3+ and Fe2+ metal ions were determined as 6 × 10-4 M-1 and 3.6 × 10-4 M-1 respectively. Benesi-Hildebrand plot confirmed 1:1 binding ratio between metal ions and ligand.
Collapse
Affiliation(s)
- Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan.
| | - Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000, Sinop, Turkey
| | - Muhammad Aqib Khurshid
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Maryam Musaffa Anbar
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Birra Dar
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Chowdhury D, Hassan N, Roy S, Sanfui MH, Nandy P, Chang M, Rahaman M, Ghosh NN, Hasnat MA, Chattopadhyay PK, Maiti DK, Singha NR. Exploring Through-Space Charge Transfer-Mediated Optoelectrochemical Properties of Dual-State Luminescent Aliphatic Polymers and Optoelectronic Responses toward Metal Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22265-22282. [PMID: 39382181 DOI: 10.1021/acs.langmuir.4c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, natural-synthetic hybrid dual-state luminescent conducting polymers (DLCPs/DLCP1-DLCP8) possessing significant optoelectrochemical properties are strategically developed by the polymerization of prop-2-enamide, cis-butenedioic acid, 2-acrylamido-2-methylpropane-1-sulfonic acid, and in situ-generated 2-(3-acrylamidopropanamido)-2-methylpropane-1-sulfonic acid alongside the grafting of gum tragacanth. The spectroscopic data of aliphatic DLCPs affirm DLCP7 as the most stable supramolecular assembly endowing optoelectronic properties. Computational calculations identified -C(═O)NH-, -C(═O)OH, -OH, and -SO3H as subluminophores. The absorption spectra, excitation wavelength-/solvent-polarity-/concentration-dependent luminescence, solid state luminescence, aggregation-induced enhanced luminescence, and time-correlated single photon count (TCSPC) studies confirm the occurrence of aggregation-mediated intramolecular through-space charge transfer (ITSCT) in the excited state of DLCP7. Mulliken charge, natural bond orbital, dipole moments, and electronic potential surface analyses confirm the charge donor-acceptor system in DLCP7. Furthermore, the selective optoelectronic response of DLCP7 toward Ca2+/Cu(II) at 438/574 nm is explored using ultraviolet-visible spectra, TCSPC analyses, a dynamic light scattering study, and computational investigations. The chelation-enhanced luminescence and ITSCT inhibition are responsible for turn-on and turn-off detections of Ca2+ and Cu(II), respectively. Cu(II) → Cu(I) reduction in a DLCP7 solution is inferred from electrochemical and spectroscopic analyses. The conductivities of 9.65 × 10-5 S cm-1 (solid state) and 44.35 × 10-5 S cm-1 (solution) in DLCP7 are validated by current-voltage and electrochemical impedance measurements. Again, strong electronic conductivities of 43.89 × 10-5 S cm-1 (solid state)/53.34 × 10-5 S cm-1 (solution) and 45.42 × 10-5 S cm-1 (solid state)/64.81 × 10-5 S cm-1 (solution) are observed in Ca2+-DLCP7 and Cu(II)-DLCP7, respectively.
Collapse
Affiliation(s)
- Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Preetam Nandy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
5
|
Nandakumar V, Ramasamy SS, Adhigaman K, Ganesan N, Subramani D, Ramasamy S, Nandhakumar R, Thangaraj S. Nitroquinolone Fused Salicyl and Naphthyl Hydrazone Fluorescent Probes for the Detection of Fe 3+and Pb 2+ Ions. J Fluoresc 2024:10.1007/s10895-024-03813-7. [PMID: 38954084 DOI: 10.1007/s10895-024-03813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
The application of quinolones stretches over a large umbrella of medicinal field as well as chemosensor due to the presence of privileged heterocyclic aromatic rig system. Salicyl and Naphthyl Hydrazide motifs are also established fluorophore groups. Therefore in this work, we have designed and synthesized Salicyl hydrazide (3a-c) and naphthyl hydrazide fused nitroquinolones (5a-c) investigated for their fluorescent behaviour. Preliminary UV- absorption studies were carried out and the metal selectivity were examined with various metal ion. Among them, it was found that compound 3a was selective towards Fe3+ ions (λex = 330 nm, 1:1 DMF:H2O at pH = 7.4 in HEPES Buffer medium). 3a shows decrease emission intensity in presence of Fe3+ ions. Compound 5a shows enhancement in fluorescence intensity upon addition of Pb2+ ion (λex = 280 nm, 1:1 DMF:H2O at pH = 7.4 in HEPES Buffer medium). Further, the concentration dependence, competitive binding and EDTA reversibility were studied for selected compounds towards the respective cations selectivity. Jobs plot analysis indicate that 1:1 binding of 3a with Fe3+ ion (Ka = 3.17 x104M-1 and Limit Of Detection (LOD) = 5.1 × 10-7 M) whereas 5a showed 1:2 binding mode with Pb2+ ions (Ka = 2.14 × 106 M-1 and Limit Of Detection (LOD) = 2.613 × 10-9 M). Density Function Theoretical studies were performed as support for the experimental results.
Collapse
Affiliation(s)
- Vandana Nandakumar
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Sentamil Selvi Ramasamy
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Kaviyarasu Adhigaman
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Narmatha Ganesan
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India
| | | | - Shankar Ramasamy
- Department of Physics, Bharathiar University, Coimbatore, 641 046, India
| | - Raju Nandhakumar
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India
| | - Suresh Thangaraj
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India.
| |
Collapse
|
6
|
Chakraborty A, Rajana VK, Saritha C, Srivastava A, Mandal D, Das N. A new Eosin Y-based 'turnon' fluorescent sensor for ratiometric sensing of toxic mercury ion (Hg 2+) offering unaided eye detection and its antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134207. [PMID: 38593667 DOI: 10.1016/j.jhazmat.2024.134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
A unique fluorescent molecule (ND-S) was obtained from Eosin Y in two simple yet high yielding steps (1). ND-S has special metal ion sensing ability, such that it can selectively detect toxic Hg2+ present in very low concentration in aqueous solutions in the presence of other competing metal ions. The host-guest complexation is ratiometric and is associated with significant increase in fluorescence during the process. Isothermal titration calorimetry (ITC) experiments provided thermodynamic parameters related to interaction between ND-S and Hg2+. Using inductively coupled plasma mass spectrometry (ICP-MS), the Hg2+(aq) removal efficiency of ND-S was estimated to be 99.88%. Appreciable limit of detection (LOD = 7.4 nM) was observed. Other competing ions did not interfere with the sensing of Hg2+ by ND-S. The effects of external stimuli (temperature and pH) were studied. Besides, the complex (ND-M), formed by 1:1 coordination of ND-S and Hg2+ was found to be effective against the survival of Gram-positive bacteria (S. aureus and B. subtilis) with a high selectivity index. Moreover, bacterial cell death mechanism was studied systematically. Overall, we have shown the transformation of a toxic species (Hg2+), extracted from polluted water by a biocompatible sensor (ND-S), into an effective and potent antibacterial agent (ND-M).
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Vinod K Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| |
Collapse
|
7
|
Mohanty P, Dash PP, Mishra S, Bhaskaran R, Jali BR. Thiourea Functionalised Receptor for Selective Detection of Mercury Ions and its Application in Serum Sample. J Fluoresc 2024:10.1007/s10895-024-03740-7. [PMID: 38739318 DOI: 10.1007/s10895-024-03740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
A thiourea functionalised fluorescent probe 1-phenyl-3-(pyridin-4-yl)thiourea was synthesized and utilised as a fluorescent turn-on chemosensor for the selective recognition of Hg2+ ion over competitive metal ions including Na+, Mn2+, Li+, Cr2+, Ni2+, Ca2+, Cd2+, Mg2+, K+, Co2+, Cu2+, Zn2+, Al3+ and Fe2+ ions based on the inter-molecular charge transfer (ICT). Intriguingly, the receptor demonstrated unique sensing capabilities for Hg2+ in DMSO: H2O (10:90, v/v). The addition of Hg2+ ions to the sensor resulted in a blue shift in the absorption intensity and also enhancement in fluorescence intensity at 435 nm. Fluorescence emission intensity increased linearly with Hg2+ concentration ranging from 0 to 80 µL. The detection limit and binding constant were determined as 0.134 × 10-6 M and 1.733 × 107 M-1, respectively. The sensing behavior of Hg2+ was further examined using DLS, SEM and FTIR. The probe could detect Hg2+ ions across a wide pH range. Furthermore, the receptor L demonstrated good sensing performance for Hg2+ in bovine serum albumin and actual water samples.
Collapse
Affiliation(s)
- Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Renjith Bhaskaran
- Department of Chemistry, Madanapalle Institute of Technology & Science, Kadiri Road, Angallu, Madanapalle, Annamayya District, 517325, Andhra Pradesh, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
8
|
Revanna BN, Kamat V, Swamynayaka A, Harish KK, Venkatesha K, Madegowda M, Poojary B, Majani SS, Kollur SP. Chalcone-based Turn-Off Chemosensor for Selective and Susceptible Detection of Fe 2+ Ions: Spectroscopic and DFT Investigations. J Fluoresc 2024:10.1007/s10895-024-03646-4. [PMID: 38457072 DOI: 10.1007/s10895-024-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.
Collapse
Affiliation(s)
- Bhavya Nelligere Revanna
- Department of Physics, Vidyavardhaka College of Engineering, Mysuru, 570002, Karnataka, India
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Vinuta Kamat
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, 574199, Karnataka, India
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Keshav Kumar Harish
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Keerthikumara Venkatesha
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India.
| | - Boja Poojary
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, 574199, Karnataka, India
| | - Sanjay S Majani
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570026, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570026, Karnataka, India
| |
Collapse
|
9
|
Khan SA, Alam MZ, Mohasin M, Ahmad S, Salma U, Parveen H, Mukhtar S, Al-Anazi M, Alotaibi FA, Abdelaziz MA. Ultrasound-Assisted Synthesis of Chalcone: A Highly Sensitive and Selective Fluorescent Chemosensor for the Detection of Fe 3+ in Aqueous Media. J Fluoresc 2024; 34:723-728. [PMID: 37354382 DOI: 10.1007/s10895-023-03317-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The chalcone compound DHPO was synthesized through a chemical reaction between 1-(2-hydroxyphenyl)-ethanone and 3,4-dimethoxy benzaldehyde under ultrasound irradiation. The interaction between the DHPO compound and several metal ions was studied using fluorescence behavior, revealing that the chalcone function as a "turn on and turn off" switch fluorescent sensor, for selectively and sensitively detecting Fe3+ ions. The process of fluorescence quenching and complexation of DHPO with Fe3+ ion was further studied using methods such as Benesi-Hildebrand, Stern-Volmer plot, and job plot.
Collapse
Affiliation(s)
- Salman A Khan
- Physical Sciences (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India.
| | - Md Zafer Alam
- Physical Sciences (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| | - Md Mohasin
- Physical Sciences (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| | - Suhail Ahmad
- Physical Sciences (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| | - Umme Salma
- Physical Sciences (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Fatimah A Alotaibi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Rajendran P, Murugaperumal P, Nallathambi S, Perdih F, Ayyanar S, Chellappan S. Performance of 4,5-diphenyl-1H-imidazole derived highly selective 'Turn-Off' fluorescent chemosensor for iron(III) ions detection and biological applications. LUMINESCENCE 2024; 39:e4694. [PMID: 38414310 DOI: 10.1002/bio.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.
Collapse
Affiliation(s)
- Praveena Rajendran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | | | - Sengottuvelan Nallathambi
- Department of Chemistry, Directorate of Distance Education (DDE), Alagappa University, Karaikudi, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Siva Ayyanar
- Department of Inorganic Chemistry, Madurai Kamaraj University, Madurai, India
| | - Selvaraju Chellappan
- National Center for Ultrafast Process, University of Madras, Tarmani Campus, Chennai, India
| |
Collapse
|
11
|
Joshi S, Joshi R, Jadhao M. A simple dual responsive chemosensor for selective sensing of Cs + for environmental monitoring and mimicking molecular logic gates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123580. [PMID: 37922850 DOI: 10.1016/j.saa.2023.123580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Detection of toxic metals is of vital importance to safeguard both public health and the ecosystem. Herein, we investigate the newly designed and synthesised isoxazole-based azo dye, (E)-cyclopentyl(5-((5-(4-fluorophenyl) isoxazole-3-yl) diazenyl)-2-hydroxyphenyl) methanone (FPAZ), as a dual chromogenic and fluorogenic sensor. FPAZ demonstrates high selectivity, reusability and ultra-sensitivity towards Cs+ ions manifested through naked eye detection in aqueous medium by employing simple and economic optical spectroscopy techniques. The color change from colourless to dark yellow and enhancement of fluorescence intensity reveal about FPAZ-Cs+ complexation by UV-Vis and fluorescence spectroscopy respectively. The complexation is also supported by DFT calculations. The LOD is estimated to be 0.476 µM, which by far, is the lowest LOD obtained for Cs+ detection. Further, FPAZ is fabricated with various flexible materials (paper, cotton, non-woven fabric) which provide information about on-site Cs+ ion contamination by means of change in relative RGB values using a handy smart-phone camera. Besides this, the logic gate as IMPLICATION and INHIBIT is designed employing Cs+ and Cl- ions as inputs and absorbance maxima as output. Overall, the developed chemosensor is simple, quick, and more promising than previously reported systems, as it does not need any chemical modification, expensive instruments, or expertise.
Collapse
Affiliation(s)
- Supriya Joshi
- Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Maharashtra 431203, India
| | - Ritika Joshi
- Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Maharashtra 431203, India; Department of Chemistry, S.B.E.S. College of Science, Aurangabad, Maharashtra 431001, India
| | - Manojkumar Jadhao
- Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Maharashtra 431203, India.
| |
Collapse
|
12
|
Chopra T, Parkesh R. Microwave-Assisted Synthesis of Functionalized Carbon Nanospheres Using Banana Peels: pH-Dependent Synthesis, Characterization, and Selective Sensing Applications. ACS OMEGA 2024; 9:4555-4571. [PMID: 38313540 PMCID: PMC10831994 DOI: 10.1021/acsomega.3c07544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This work presents a microwave-based green synthesis method for producing carbon nanospheres (CNSs) and investigates the impact of presynthesis pH on their size and assembly. The resulting CNSs are monodispersed, averaging 35 nm in size, and exhibit notable characteristics including high water solubility, photostability, and a narrow size distribution, achieved within a synthesis time of 15 min. The synthesized CNS features functional groups such as -OH, -COOH, -NH, -C-O-C, =C-H, and -CH. This diversity empowers the CNS for various applications including sensing. The CNS exhibits a distinct UV peak at 282 nm and emits intense fluorescence at 430 nm upon excitation at 350 nm. These functionalized CNSs enable selective and specific sensing of Cu2+ ions and the amino acid tryptophan (Trp) in aqueous solutions. In the presence of Cu2+ ions, static-based quenching of CNS fluorescence was observed due to the chelation-enhanced quenching (CHEQ) effect. Notably, Cu2+ ions induce a substantial change in UV spectra alongside a red-shift in the peak position. The limits of detection and quantification for Cu2+ ions with CNS are determined as 0.73 and 2.45 μg/mL, respectively. Additionally, on interaction with tryptophan, the UV spectra of CNS display a marked increase in the peak at 282 nm, accompanied by a red-shift phenomenon. The limits of detection and quantification for l-tryptophan are 4.510 × 10-3 and 1.50 × 10-2 μg/mL, respectively, indicating its significant potential for biological applications. Furthermore, the practical applicability of CNSs is demonstrated by their successful implementation in analyzing real water samples and filter paper-based examination, showcasing their effectiveness for on-site sensing.
Collapse
Affiliation(s)
- Tavishi Chopra
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Raman Parkesh
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
13
|
Ricart D, Dorado AD, Lao-Luque C, Baeza M. Microflow injection analysis based on modular 3D platforms and colorimetric detection for Fe(III) monitoring in a wide concentration range. Mikrochim Acta 2023; 191:3. [PMID: 38041754 PMCID: PMC10693521 DOI: 10.1007/s00604-023-06029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 12/03/2023]
Abstract
A modular microflow injection analysis (microFIA) system for the determination of Fe(III) in a bioleaching reactor has been designed, developed and validated. The different modules of the analyzer (mixer, diluter, disperser and detector) were 3D-printed. Fe(III) quantification is due by measuring the color intensity of the chelate formed between Fe(III) and salicylic acid at 525 nm. The device has been designed to dilute, disperse and detect high Fe(III) concentrations in the form of an inexpensive multi-step photometric flow cell that uses an light-emitting diode (LED) as a light source and an light-dependent resistor (LDR) as a light intensity detector. This microFIA system has been shown to be suitable for automatic and continuous determination of Fe(III) in the operation of a bioreactor for the oxidation of Fe(II). The device has a good repeatability (less than 5% of coefficient of variation in the whole range of concentrations) and accuracy of around 100%. The analyzer features an exceptional wide linear range, between 25 and 6000 mg·L-1. The device was successfully applied to the determination of Fe(III) in real samples. The obtained results proved that the method is applicable for accurate, precise, rapid, and low-cost colorimetric analysis and didn't show significant differences with a conventional UV-Vis method.
Collapse
Affiliation(s)
- David Ricart
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Antonio David Dorado
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Conxita Lao-Luque
- Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Mireia Baeza
- GENOCOV Research Group, Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·Lers, 08193, Bellaterra, Spain.
| |
Collapse
|
14
|
Hamada WM, El-Nahass MN, Noser AA, Fayed TA, El-Kemary M, Salem MM, Bakr EA. Simple dihydropyridine-based colorimetric chemosensors for heavy metal ion detection, biological evaluation, molecular docking, and ADMET profiling. Sci Rep 2023; 13:15420. [PMID: 37723190 PMCID: PMC10507071 DOI: 10.1038/s41598-023-42137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
In this study, two novel chemosensors containing dihydropyridine fragment namely; (2E, 2E')-1,1'-(2,6-dimethyl-1,4-dihydropyridine-3,5-diyl)bis(3-(4-(dimethylamino)phenyl)prop-2-en-1-one) (1), (2E,2E',4E,4E')-1,1' -(2,6-dimethyl-1,4-dihydropyridine-3,5-diyl)bis(5-(4-(dimethylamino)phenyl)penta-2,4-dien-1-one) (2) have been synthesized and characterized. The solvatochromic behavior was explored in different solvents of various polarities. The visual detection, as well as UV-Vis and fluorescence measurements were carried out to explore the colorimetric and optical sensing properties of the investigated chemosensors towards various metal ions such as Al3+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Mg2+, Hg2+ and Zn2+. The chemosensors 1 and 2 have strong detecting abilities, with excellent sensitivity and selectivity for Cu2+ and Fe3+, respectively, over the other metal ions. The chemosensors were totally reversible upon addition of EDTA to the formed complexes and displayed a turn on-off-on fluorescence response based on an effect of chelation-quenching fluorescence. The antioxidant activities of the investigated chemosensors were assessed. They were examined in-silico for their capacity to block the Akt signaling pathway, which is involved in cancer proliferation with interpreting their pharmacokinetics aspects. Furthermore, in-vitro antitumor evaluation against a panel of cancer cell lines for the investigated chemosensors has been examined. Conclusively, chemosensor 1 was more effective at scavenging free radicals and as an anticancer agent and could be exploited as a therapeutic candidate for cancer therapy than chemosensor 2 due to its potential inhibition of Akt protein.
Collapse
Affiliation(s)
- Wafaa M Hamada
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Marwa N El-Nahass
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ahmed A Noser
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek A Fayed
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman A Bakr
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
15
|
Pinto SCS, Gonçalves RCR, Costa SPG, Raposo MMM. Colorimetric Chemosensor for Cu 2+ and Fe 3+ Based on a meso-Triphenylamine-BODIPY Derivative. SENSORS (BASEL, SWITZERLAND) 2023; 23:6995. [PMID: 37571777 PMCID: PMC10422517 DOI: 10.3390/s23156995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Optical chemosensors are a practical tool for the detection and quantification of important analytes in biological and environmental fields, such as Cu2+ and Fe3+. To the best of our knowledge, a BODIPY derivative capable of detecting Cu2+ and Fe3+ simultaneously through a colorimetric response has not yet been described in the literature. In this work, a meso-triphenylamine-BODIPY derivative is reported for the highly selective detection of Cu2+ and Fe3+. In the preliminary chemosensing study, this compound showed a significant color change from yellow to blue-green in the presence of Cu2+ and Fe3+. With only one equivalent of cation, a change in the absorption band of the compound and the appearance of a new band around 700 nm were observed. Furthermore, only 10 equivalents of Cu2+/Fe3+ were needed to reach the absorption plateau in the UV-visible titrations. Compound 1 showed excellent sensitivity toward Cu2+ and Fe3+ detection, with LODs of 0.63 µM and 1.06 µM, respectively. The binding constant calculation indicated a strong complexation between compound 1 and Cu2+/Fe3+ ions. The 1H and 19F NMR titrations showed that an increasing concentration of cations induced a broadening and shifting of the aromatic region peaks, as well as the disappearance of the original fluorine peaks of the BODIPY core, which suggests that the ligand-metal (1:2) interaction may occur through the triphenylamino group and the BODIPY core.
Collapse
Affiliation(s)
| | | | | | - M. Manuela M. Raposo
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.C.S.P.); (R.C.R.G.)
| |
Collapse
|
16
|
Rupa SA, Patwary MAM, Ghann WE, Abdullahi A, Uddin AKMR, Mahmud MM, Haque MA, Uddin J, Kazi M. Synthesis of a novel hydrazone-based compound applied as a fluorescence turn-on chemosensor for iron(iii) and a colorimetric sensor for copper(ii) with antimicrobial, DFT and molecular docking studies. RSC Adv 2023; 13:23819-23828. [PMID: 37564256 PMCID: PMC10411390 DOI: 10.1039/d3ra04364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Hydrazone-hydrazide-based linkers perform a crucial role in environmental as well as biological fields. Such linkers are employed to detect exact metal ions at a minute level; hence, numerous probes are available. Even though thiophene-based molecules have a unique position in the medicinal arena, only very few chemosensors are reported based on such a moiety. In this current work, a novel hydrazide-hydrazone-based fluorogenic molecule 5-bromo-2-hydroxy-N'-[(1E)-1-(thiophen-2-yl)ethylidene]benzohydrazide (L) has been successfully designed and synthesized. The sensing studies of L demonstrated a ratio metric as well as turn-on-enhanced fluorescence and colorimetric response toward Fe3+ and Cu2+ ions, respectively and it was observed to be insensitive toward various metal ions. The Job plots revealed that the binding stoichiometry of L and metal ions is 2 : 1. In addition, density functional theory (DFT) results strongly suggested that L can be used as a powerful colorimetric sensor for the detection of Cu2+ ions. In vitro antimicrobial activities of L were evaluated by disk diffusion and results revealed good antibacterial activities against E. coli. Further, molecular docking was executed with DNA gyrase (PDB ID: 1KZN) of E. coli and the calculated interaction energy value was found to be -7.7 kcal mol-1. Finally, molecular docking, fluorescence, colorimetry and the HOMO-LUMO energy gap of the compound can provide new insights into developing drugs and detecting metals in biomolecules.
Collapse
Affiliation(s)
| | | | - William Emmanuel Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | - Adams Abdullahi
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | | | - Md Mayez Mahmud
- Tokushima University, Faculty of Pharmaceutical Science Tokushima Shi 770-0026 Japan
| | - Md Aminul Haque
- Department of Chemistry, Jagannath University Dhaka-1100 Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
17
|
Christopher Leslee DB, Madheswaran B, Gunasekaran J, Karuppannan S, Kuppannan SB. Iminobenzophenone-thiophen hydrazide schiff base: a selective turn on sensor for paramagnetic Fe 3+ ion and application in real sample analysis. Photochem Photobiol Sci 2023:10.1007/s43630-023-00422-4. [PMID: 37083995 DOI: 10.1007/s43630-023-00422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
A highly selective turn-on sensor for paramagnetic Fe3+ ions based on (E)-N'-((2-aminophenyl)(phenyl)methylene)thiophene-2-carbohydrazide is successfully synthesized. The sensor BPTH is significantly selective and sensitive towards Fe3+ ions over other interfering metal ions especially Cu2+ and Co2+ ions with a lowest limit of recognition 1.48 × 10-7 M. The turn-on sensing mechanism involves enhanced charge transfer. Fe3+ ion forms strong binding with the ligand with a Ka value about 8.23 × 104 M-1 and a 1:1 stoichiometric ratio is confirmed by Job's plot experiment. With Fe3+ ion, the yellow ligand BPTH change to a green fluorescent and reversible with 1 equivalent of EDTA. Practical application of sensor is demonstrated in real sample analysis.
Collapse
Affiliation(s)
- Denzil Britto Christopher Leslee
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Bharathi Madheswaran
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Jayapratha Gunasekaran
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Sekar Karuppannan
- Department of Science and Humanities (Chemistry), Anna University, University College of Engineering, Dindigul, Tamil Nadu, 624622, India
| | - Shanmuga Bharathi Kuppannan
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
18
|
Hou X, Song Y, Lv Y, Wang P, Chen K, Li G, Guo L. Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe 3+ and Fe 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122254. [PMID: 36577245 DOI: 10.1016/j.saa.2022.122254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Temperature-responsive nanomicelles with aggregation induced emission (AIE) property were prepared by the host-guest complexation of ferrocene functionalized tetraphenyl (TPE-Fc) and β-cyclodextrin-poly (N-isopropylacrylamide) (β-CD-(PNIPAM)7). The AIE chromophore TPE-Fc bound to the hydrophobic cavity of cyclodextrin serves as the core of micelles, and temperature sensitive PNIPAM serves as the shell to give the micelles good solubility. The size of the nanomicelles is about 100 nm. At the excitation wavelength of 340 nm, the strongest fluorescent emission peak was 421 nm. The introduction of cyclodextrin star polymer increased the fluorescence intensity of nanomicelles, thus improving the recognition of probe to Fe3+ and Fe2+. The fluorescent probe can quickly detect Fe3+ and Fe2+ in water within 5 min even in the presence of various interfering ions. The detection limits of Fe3+ and Fe2+ were 1.04 μM and 0.78 μM, respectively in the range of 10-90 μM. The formation of complex between the probe and Fe3+/Fe2+ was supported by Job's plot. The probe was successfully applied to the detection of Fe3+and Fe2+ in actual water sample with a good recovery. In addition, a possible sensing mechanism for the interaction of iron ions with amide bond groups of nanomicelles was proposed.
Collapse
Affiliation(s)
- Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yifan Song
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Kun Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
19
|
Dare EO, Akinhanmi TF, Aremu JA, Adetunji OR, Bamgbose JT, Vendrell-Criado V, Jiménez MC, Pérez-Ruiz R, Bonardd S, Díaz Díaz D. Dual-mode colorimetric/fluorescent chemosensor for Cu 2+/Zn 2+ and fingerprint imaging based on rhodamine ethylenediamine bis(triazolyl silsesquioxane). Photochem Photobiol Sci 2023:10.1007/s43630-023-00395-4. [PMID: 36922485 DOI: 10.1007/s43630-023-00395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
A novel dual functional and visual rhodamine ethylenediamine bis(triazolyl silsesquioxane) (RBS) chemosensor was successfully synthesized using "click" chemistry. The results have unambiguously demonstrated that RBS can act in fluorescent and colorimetric sensing of Cu2+ and Zn2+ by their respective coordination with triazole structures and, more importantly, it has also been found that triazole-amide of RBS could turn on chelation-enhanced fluorescence (CHEF) of Cu2+. Remarkably, the addition of Cu2+ triggered an enhanced fluorescent emission by 63.3-fold (ϕF = 0.41), while Zn2+ enhanced it 48.3-fold (ϕF = 0.29) relative to the original RBS (ϕF = 0.006) in acetonitrile (MeCN) solvent. The fluorescent limit of detection for Cu2+ and Zn2+ is similar and fall within 3.0 nM, while under colorimetric sensing the responses were 2.14 × 10-8 and 4.0 × 10-8 mol L-1, respectively. Moreover, the effective sensing profile of RBS and extended applications of RBS-Cu2+ and RBS-Zn2+ for fingerprinting detection and imaging were observed with adequate sensitivity, stability and legibility under the dual visual responses.
Collapse
Affiliation(s)
- Enock O Dare
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, Regensburg University, Regensburg, Germany.
| | | | - J A Aremu
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olayide R Adetunji
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.,Department of Mechanical Engineering, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Janet T Bamgbose
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Victoria Vendrell-Criado
- Departamento de Química, Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Sebastian Bonardd
- Departamento de Química Orgánica, Universidad de la Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain.,Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain
| | - David Díaz Díaz
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, Regensburg University, Regensburg, Germany. .,Departamento de Química Orgánica, Universidad de la Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain. .,Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain.
| |
Collapse
|
20
|
Umare M, Patel DA, Bhardwaj V, Sk AK, Sahoo SK. Pyridoxal Derived AIEgen for Fluorescence Turn-off Sensing of Cu 2+ and Fe 2+ Ions and Fluorescence Imaging of Latent Fingerprints. J Fluoresc 2023; 33:601-611. [PMID: 36469208 DOI: 10.1007/s10895-022-03109-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Schiff base 4-((E)-((E)-(2-hydroxybenzylidene)hydrazono)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (HSP) was synthesized by condensing vitamin B6 cofactor pyridoxal with salicylaldehyde hydrazone, and characterized by standard spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and ESI-MS). The solution of HSP in DMSO/HEPES (10 mM, pH = 7.4) mixed solvents with varying HEPES fractions (fw) from 0 to 95% showed aggregation-induced emission (AIE). The AIE active HSP in 95% HEPES gave intense fluorescent emission at 570 nm was employed for the detection of metal ions. The fluorescence of HSP was quenched upon adding Cu2+ and Fe2+ ions. The association constant (Ka) of the Schiff base HSP with Cu2+ and Fe2+ ions was estimated as 4.08 × 105 M-1 and 1.23 × 105 M-1, respectively by using the online analysis tool BindFit v0.5. The HSP showed the detection limit down to 1.75 µM and 1.89 µM for Cu2+ and Fe2+ ions, respectively. Further, the aggregates of HSP were applied to visualize latent fingerprints (LFPs) over a non-porous glass slide.
Collapse
Affiliation(s)
- Mahesh Umare
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Ashok Kumar Sk
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India.
| |
Collapse
|
21
|
Prajapati S, Sinha P, Hindore S, Jana S. Selective turn-on fluorescence sensing of Fe 2+ in real water samples by chalcones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122107. [PMID: 36410175 DOI: 10.1016/j.saa.2022.122107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The design of fluorescence sensor for selective detection of Fe2+ is very important as it is part of different biochemical redox system related to a number of diseases. In many occasion sensors are unable to distinguish Fe2+ from Fe3+ ions. In the present work, we report simple chalcone type sensors for sensing Fe2+ ions in semi aqueous system. The receptors R1 and R2 have showed excellent sensing properties at pH 7 in CH3OH-H2O (1:1, v/v) solvent system. The fluorescence emission intensity of the complexes between hosts and Fe2+ is least affected by the other competitive metal ions leading to the formation of very tight host-guest complex. The LOD for the R1 and R2 for Fe2+ are 1.91 μM and 3.54 μM respectively, which is quite low in compared to the many other reported sensors. The practical applicability of these sensors is determined by the detection of Fe2+ in real water samples. So chalcones would be cost effective PET inhibited fluorescence sensor for Fe2+.
Collapse
Affiliation(s)
- Sunita Prajapati
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Sandeep Hindore
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India.
| |
Collapse
|
22
|
Facile green synthesized C-4-Hydroxy-3-methoxyphenylcalix[4]Resorcinarene (CHMPCR) for photometric sensing of Fe3+ and Cu2+ ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Lu Z, Xu G, Yang X, Liu S, Sun Y, Chen L, Liu Q, Liu J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. Int J Mol Sci 2022; 23:ijms232415656. [PMID: 36555298 PMCID: PMC9779597 DOI: 10.3390/ijms232415656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Herein, we developed a dual-activated prodrug, BTC, that contains three functional components: a glutathione (GSH)-responsive BODIPY-based photosensitizer with a photoinduced electron transfer (PET) effect between BODIPY and the 2,4-dinitrobenzenesulfonate (DNBS) group, and an ROS-responsive thioketal linker connecting BODIPY and the chemotherapeutic agent camptothecin (CPT). Interestingly, CPT displayed low toxicity because the active site of CPT was modified by the BODIPY-based macrocycle. Additionally, BTC was encapsulated with the amphiphilic polymer DSPE-mPEG2000 to improve drug solubility and tumor selectivity. The resulting nano-prodrug passively targeted tumor cells through enhanced permeability and retention (EPR) effects, and then the photosensitizing ability of the BODIPY dye was restored by removing the DNBS group with the high concentration of GSH in tumor cells. Light-triggered ROS from activated BODIPY can not only induce apoptosis or necrosis of tumor cells but also sever the thioketal linker to release CPT, achieving the combination treatment of selective photodynamic therapy and chemotherapy. The antitumor activity of the prodrug has been demonstrated in mouse mammary carcinoma 4T1 and human breast cancer MCF-7 cell lines and 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Ziyao Lu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Gan Xu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaozhen Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shijia Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Correspondence: (Q.L.); (J.L.)
| | - Jianyong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Q.L.); (J.L.)
| |
Collapse
|
24
|
Gosi M, Kumar AC, Sunandamma Y. Fluorescence Variation in Selective Sensing of Hg 2+and Cu 2+ Ions By Coumarin-xanthene Fused Optical Probe. J Fluoresc 2022; 32:2379-2393. [PMID: 36181603 DOI: 10.1007/s10895-022-03030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 10/06/2022]
Abstract
The fluorescent moieties coumarin and xanthene (R6GCP) combined in a single molecule was designed and synthesized. The colorimetric and fluorescent variation of the probe towards the copper and mercury ions sensing is examined. With the added copper/mercury ions to the solution of R6GCP in DMF:H2O (2:8, v/v), the probe showed deep red color from yellow color. The probe showed turn-off and turn-on fluorescence for copper and mercury ion respectively. In the presence of other competing metal ions, the probe showed better sensitivity towards copper and mercury ions. The probe's detection limit found to be 5.29 × 10-6 M and 1.24 × 10-5 M for Cu2+ and Hg2+ ion respectively by the UV-visible spectral measurement. Fluorescence measurement, the detection limit for the Cu2+ and Hg2+ ions detection by this probe is 1.91 × 10-7 M, and 1.32 × 10-8 M respectively. 1:1 binding stoichiometry was confirmed between the probe and Cu2+/Hg2+ ions from jobs plot by UV-visible spectral technique. Moreover, R6GCP combined filter paper were prepared. These test paper containing probe could detect Cu2+/Hg2+ ions in real-time with a spontaneous color change.
Collapse
Affiliation(s)
- Mahesh Gosi
- Department of Chemistry, Acharya Nagarjuna University, Nagarjunanagar, Guntur, 522510, Andhra Pradesh, India
| | - Anitha C Kumar
- Department of Applied Chemistry, Cochin University of Science and Technology, Ernakulam, 682022,, Kerala, India
| | - Yeturu Sunandamma
- Department of Chemistry, Acharya Nagarjuna University, Nagarjunanagar, Guntur, 522510, Andhra Pradesh, India.
| |
Collapse
|
25
|
Sivakumar K, Chaitanya GK. α- Cyclodextrin based Chemosensors: A Review. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- K. Sivakumar
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) (SCSVMV), Tamilnadu, India
| | - G. Krishna Chaitanya
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) (SCSVMV), Tamilnadu, India
| |
Collapse
|
26
|
Four coordination polymers luminescent materials for selectively detection of Fe3+/Cr2O72−/nitrobenzene in solution phase. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|