1
|
Guimaraes GJ, Kim J, Bartlett MG. Characterization of mRNA therapeutics. MASS SPECTROMETRY REVIEWS 2024; 43:1066-1090. [PMID: 37401740 DOI: 10.1002/mas.21856] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
Therapeutic messenger RNAs (mRNAs) have emerged as powerful tools in the treatment of complex diseases, especially for conditions that lack efficacious treatment. The successful application of this modality can be attributed to its ability to encode entire proteins. While the large nature of these molecules has supported their success as therapeutics, its extended size creates several analytical challenges. To further support therapeutic mRNA development and its deployment in clinical trials, appropriate methods to support their characterization must be developed. In this review, we describe current analytical methods that have been used in the characterization of RNA quality, identity, and integrity. Advantages and limitations from several analytical techniques ranging from gel electrophoresis to liquid chromatography-mass spectrometry and from shotgun sequencing to intact mass measurements are discussed. We comprehensively describe the application of analytical methods in the measurements of capping efficiency, poly A tail analysis, as well as their applicability in stability studies.
Collapse
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Yuen BPN, Wong KS, So YM, Kwok WH, Cheung HW, Wan TSM, Ho ENM, Wong WT. Gene Doping Control Analysis of Human Erythropoietin Transgene in Equine Plasma by PCR-Liquid Chromatography High-Resolution Tandem Mass Spectrometry. Anal Chem 2024; 96:5307-5314. [PMID: 38504497 DOI: 10.1021/acs.analchem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Gene doping involves the misuse of genetic materials to alter an athlete's performance, which is banned at all times in both human and equine sports. Quantitative polymerase chain reaction (qPCR) assays have been used to control the misuse of transgenes in equine sports. Our laboratory recently developed and implemented duplex as well as multiplex qPCR assays for transgenes detection. To further advance gene doping control, we have developed for the first time a sensitive and definitive PCR-liquid chromatography high-resolution tandem mass spectrometry (PCR-LC-HRMS/MS) method for transgene detection with an estimated limit of detection of below 100 copies/mL for the human erythropoietin (hEPO) transgene in equine plasma. The method involved magnetic-glass-particle-based extraction of DNA from equine plasma prior to PCR amplification with 2'-deoxyuridine 5'-triphosphate (dUTP) followed by treatments with uracil DNA glycosylase and hot piperidine for selective cleavage to give small oligonucleotide fragments. The resulting DNA fragments were then analyzed by LC-HRMS/MS. The applicability of this method has been demonstrated by the successful detection of hEPO transgene in a blood sample collected from a gelding (castrated male horse) that had been administered the transgene. This novel approach not only serves as a complementary method for transgene detection but also paves the way for developing a generic PCR-LC-HRMS/MS method for the detection of multiple transgenes.
Collapse
Affiliation(s)
- Bruce Pui-Nam Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Terence See Ming Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Emmie Ngai-Man Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Camperi J, Lippold S, Ayalew L, Roper B, Shao S, Freund E, Nissenbaum A, Galan C, Cao Q, Yang F, Yu C, Guilbaud A. Comprehensive Impurity Profiling of mRNA: Evaluating Current Technologies and Advanced Analytical Techniques. Anal Chem 2024; 96:3886-3897. [PMID: 38377434 PMCID: PMC10918618 DOI: 10.1021/acs.analchem.3c05539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
In vitro transcription (IVT) of mRNA is a versatile platform for a broad range of biotechnological applications. Its rapid, scalable, and cost-effective production makes it a compelling choice for the development of mRNA-based cancer therapies and vaccines against infectious diseases. The impurities generated during mRNA production can potentially impact the safety and efficacy of mRNA therapeutics, but their structural complexity has not been investigated in detail yet. This study pioneers a comprehensive profiling of IVT mRNA impurities, integrating current technologies with innovative analytical tools. We have developed highly reproducible, efficient, and stability-indicating ion-pair reversed-phase liquid chromatography and capillary gel electrophoresis methods to determine the purity of mRNA from different suppliers. Furthermore, we introduced the applicability of microcapillary electrophoresis for high-throughput (<1.5 min analysis time per sample) mRNA impurity profiling. Our findings revealed that impurities are mainly attributed to mRNA variants with different poly(A) tail lengths due to aborted additions or partial hydrolysis and the presence of double-stranded mRNA (dsRNA) byproducts, particularly the dsRNA 3'-loop back form. We also implemented mass photometry and native mass spectrometry for the characterization of mRNA and its related product impurities. Mass photometry enabled the determination of the number of nucleotides of different mRNAs with high accuracy as well as the detection of their size variants [i.e., aggregates and partial and/or total absence of the poly(A) tail], thus providing valuable information on mRNA identity and integrity. In addition, native mass spectrometry provided insights into mRNA intact mass, heterogeneity, and important sequence features such as poly(A) tail length and distribution. This study highlights the existing bottlenecks and opportunities for improvement in the analytical characterization of IVT mRNA, thus contributing to the refinement and streamlining of mRNA production, paving the way for continued advancements in biotechnological applications.
Collapse
Affiliation(s)
- Julien Camperi
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steffen Lippold
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Luladey Ayalew
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Roper
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephanie Shao
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Emily Freund
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ariane Nissenbaum
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carolina Galan
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Qinjingwen Cao
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Feng Yang
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher Yu
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Axel Guilbaud
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Wolf EJ, Dai N, Chan SH, Corrêa IR. Selective Characterization of mRNA 5' End-Capping by DNA Probe-Directed Enrichment with Site-Specific Endoribonucleases. ACS Pharmacol Transl Sci 2023; 6:1692-1702. [PMID: 37974627 PMCID: PMC10644504 DOI: 10.1021/acsptsci.3c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
The N7-methyl guanosine cap structure is an essential 5' end modification of eukaryotic mRNA. It plays a critical role in many aspects of the life cycle of mRNA, including nuclear export, stability, and translation. Equipping synthetic transcripts with a 5' cap is paramount to the development of effective mRNA vaccines and therapeutics. Here, we report a simple and flexible workflow to selectively isolate and analyze structural features of the 5' end of an mRNA by means of DNA probe-directed enrichment with site-specific single-strand endoribonucleases. Specifically, we showed that the RNA cleavage by site-specific RNases can be effectively steered by a complementary DNA probe to recognition sites downstream of the probe-hybridized region, utilizing a flexible range of DNA probe designs. We applied this approach using human RNase 4 to isolate well-defined cleavage products from the 5' end of diverse uridylated and N1-methylpseudouridylated mRNA 5' end transcript sequences. hRNase 4 increases the precision of the RNA cleavage, reducing product heterogeneity while providing comparable estimates of capped products and their intermediaries relative to the widely used RNase H. Collectively, we demonstrated that this workflow ensures well-defined and predictable 5' end cleavage products suitable for analysis and relative quantitation of synthetic mRNA 5' cap structures by UHPLC-MS/MS.
Collapse
Affiliation(s)
- Eric J. Wolf
- New England Biolabs, Inc., 43/44 Dunham Ridge, Beverly, Massachusetts 01915, United States
| | - Nan Dai
- New England Biolabs, Inc., 43/44 Dunham Ridge, Beverly, Massachusetts 01915, United States
| | - Siu-Hong Chan
- New England Biolabs, Inc., 43/44 Dunham Ridge, Beverly, Massachusetts 01915, United States
| | - Ivan R. Corrêa
- New England Biolabs, Inc., 43/44 Dunham Ridge, Beverly, Massachusetts 01915, United States
| |
Collapse
|