1
|
Yang L, Hu Z, Xiang Z, Zhou J, Wang X, Liu Q, Gan L, Shi S, Yang W, Zhang Y, Wu J. A high-entropy electrode material for electrobiochemical and eletrophysiological signals detection. CHEMICAL ENGINEERING JOURNAL 2024; 499:156209. [DOI: 10.1016/j.cej.2024.156209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
2
|
Colachis M, Schlink BR, Colachis S, Shqau K, Huegen BL, Palmer K, Heintz A. Benchtop Performance of Novel Mixed Ionic-Electronic Conductive Electrode Form Factors for Biopotential Recordings. SENSORS (BASEL, SWITZERLAND) 2024; 24:3136. [PMID: 38793990 PMCID: PMC11125343 DOI: 10.3390/s24103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Background: Traditional gel-based (wet) electrodes for biopotential recordings have several shortcomings that limit their practicality for real-world measurements. Dry electrodes may improve usability, but they often suffer from reduced signal quality. We sought to evaluate the biopotential recording properties of a novel mixed ionic-electronic conductive (MIEC) material for improved performance. Methods: We fabricated four MIEC electrode form factors and compared their signal recording properties to two control electrodes, which are electrodes commonly used for biopotential recordings (Ag-AgCl and stainless steel). We used an agar synthetic skin to characterize the impedance of each electrode form factor. An electrical phantom setup allowed us to compare the recording quality of simulated biopotentials with ground-truth sources. Results: All MIEC electrode form factors yielded impedances in a similar range to the control electrodes (all <80 kΩ at 100 Hz). Three of the four MIEC samples produced similar signal-to-noise ratios and interfacial charge transfers as the control electrodes. Conclusions: The MIEC electrodes demonstrated similar and, in some cases, better signal recording characteristics than current state-of-the-art electrodes. MIEC electrodes can also be fabricated into a myriad of form factors, underscoring the great potential this novel material has across a wide range of biopotential recording applications.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Bryan R. Schlink
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Sam Colachis
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Krenar Shqau
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Brittani L. Huegen
- UES, a BlueHalo Company, 4401 Dayton Xenia Road, Beavercreek, OH 45432, USA;
| | - Katherine Palmer
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Amy Heintz
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| |
Collapse
|
3
|
Nguyen DV, Mills D, Tran CD, Nguyen T, Nguyen H, Tran TL, Song P, Phan HP, Nguyen NT, Dao DV, Bell J, Dinh T. Facile Fabrication of "Tacky", Stretchable, and Aligned Carbon Nanotube Sheet-Based Electronics for On-Skin Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58746-58760. [PMID: 38051258 DOI: 10.1021/acsami.3c13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Point-of-care monitoring of physiological signals such as electrocardiogram, electromyogram, and electroencephalogram is essential for prompt disease diagnosis and quick treatment, which can be realized through advanced skin-worn electronics. However, it is still challenging to design an intimate and nonrestrictive skin-contact device for physiological measurements with high fidelity and artifact tolerance. This research presents a facile method using a "tacky" surface to produce a tight interface between the ACNT skin-like electronic and the skin. The method provides the skin-worn electronic with a stretchability of up to 70% strain, greater than that of most common epidermal electrodes. Low-density ACNT bundles facilitate the infiltration of adhesive and improve the conformal contact between the ACNT sheet and the skin, while dense ACNT bundles lessen this effect. The stretchability and conformal contact allow the ACNT sheet-based electronics to create a tight interface with the skin, which enables the high-fidelity measurement of physiological signals (the Pearson's coefficient of 0.98) and tolerance for motion artifacts. In addition, our method allows the use of degradable substrates to enable reusability and degradability of the electronics based on ACNT sheets, integrating "green" properties into on-skin electronics.
Collapse
Affiliation(s)
- Duy Van Nguyen
- School of Engineering, University of Southern Queensland, Brisbane 4300, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Brisbane 4305, Queensland, Australia
| | - Canh-Dung Tran
- School of Engineering, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Thanh Nguyen
- School of Engineering, University of Southern Queensland, Brisbane 4300, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Hung Nguyen
- School of Engineering, University of Southern Queensland, Brisbane 4300, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Thi Lap Tran
- School of Engineering, University of Southern Queensland, Brisbane 4300, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney 1466, New South Wales, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111, Queensland, Australia
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111, Queensland, Australia
- Griffith School of Engineering, Griffith University, Gold Coast 4125, Queensland, Australia
| | - John Bell
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| | - Toan Dinh
- School of Engineering, University of Southern Queensland, Brisbane 4300, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Brisbane 4300, Queensland, Australia
| |
Collapse
|
4
|
Abd-Elbaki MKM, Ragab TM, Ismael NER, Khalil ASG. Robust, self-adhesive and anti-bacterial silk-based LIG electrodes for electrophysiological monitoring. RSC Adv 2023; 13:31704-31719. [PMID: 37908662 PMCID: PMC10613951 DOI: 10.1039/d3ra05730e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Flexible wearable electrodes have been extensively used for obtaining electrophysiological signals towards smart health monitoring and disease diagnosis. Here, low-cost, and non-conductive silk fabric (SF) have been processed into highly conductive laser induced graphene (LIG) electrodes while maintaining the original structure of SF. A CO2-pulsed laser was utilized to produce LIG-SF with controlled sheet resistance and mechanical properties. Laser processing of SFs under optimized conditions yielded LIG-SF electrodes with a high degree of homogeneity on both, top and bottom layers. Silk fibroin/Ca2+ adhesive layers effectively promoted the adhesive, anti-bacterial properties and provided a conformal contact of LIG-SF electrodes with human skin. Compared with conventional Ag/AgCl electrodes, LIG-SF electrodes possesses a much lower contact impedance in contact with human skin enabling highly stable electrophysiological signals recording. The applicability of adhesive LIG-SF electrodes to acquire electrocardiogram (ECG) signals was investigated. ECG signals recordings of adhesive LIG-SF electrodes showed excellent performance compared to conventional Ag/AgCl electrodes at intense body movements while running at different speeds for up to 9 km over a duration of 24 h. Therefore, our proposed adhesive LIG-SF electrodes can be applied for long-term personalized healthcare monitoring and sports management applications.
Collapse
Affiliation(s)
| | - Tamer Mosaad Ragab
- Department of Cardiology, Faculty of Medicine, Fayoum University 63514 Fayoum Egypt
| | - Naglaa E R Ismael
- Zoology Department, Faculty of Science, Fayoum University 63514 Fayoum Egypt
| | - Ahmed S G Khalil
- Physics Department, Environmental and Smart Technology Group, Faculty of Science, Fayoum University 63514 Fayoum Egypt
- Institute of Basic and Applied Sciences, Faculty of Engineering, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Egypt
| |
Collapse
|
5
|
Tseghai GB, Malengier B, Fante KA, Van Langenhove L. Hook Fabric Electroencephalography Electrode for Brain Activity Measurement without Shaving the Head. Polymers (Basel) 2023; 15:3673. [PMID: 37765526 PMCID: PMC10537404 DOI: 10.3390/polym15183673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In this research, novel electroencephalogram (EEG) electrodes were developed to detect high-quality EEG signals without the requirement of conductive gels, skin treatments, or head shaving. These electrodes were created using electrically conductive hook fabric with a resistance of 1 Ω/sq. The pointed hooks of the conductive fabric establish direct contact with the skin and can penetrate through hair. To ensure excellent contact between the hook fabric electrode and the scalp, a knitted-net EEG bridge cap with a bridging effect was employed. The results showed that the hook fabric electrode exhibited lower skin-to-electrode impedance compared to the dry Ag/AgCl comb electrode. Additionally, it collected high-quality signals on par with the standard wet gold cups and commercial dry Ag/AgCl comb electrodes. Moreover, the hook fabric electrode displayed a higher signal-to-noise ratio (33.6 dB) with a 4.2% advantage over the standard wet gold cup electrode. This innovative electrode design eliminates the need for conductive gel and head shaving, offering enhanced flexibility and lightweight characteristics, making it ideal for integration into textile structures and facilitating convenient long-term monitoring.
Collapse
Affiliation(s)
- Granch Berhe Tseghai
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (L.V.L.)
- Jimma Institute of Technology, Jimma University, Jimma P.O. Box 307, Ethiopia;
| | - Benny Malengier
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (L.V.L.)
| | - Kinde Anlay Fante
- Jimma Institute of Technology, Jimma University, Jimma P.O. Box 307, Ethiopia;
| | - Lieva Van Langenhove
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (L.V.L.)
| |
Collapse
|
6
|
Serrano-Finetti E, Hornero G, Mainar S, López F, Crailsheim D, Feliu O, Casas O. A non-invasive, concealed electrocardiogram and bioimpedance measurement system for captive primates. J Exp Biol 2023; 226:jeb245783. [PMID: 37599599 DOI: 10.1242/jeb.245783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Captive housed non-human primates, specifically great apes such as chimpanzees (Pan troglodytes) are frequently reported to have died from or are diagnosed with potentially fatal heart conditions that require the monitoring of physiological signals such as electrocardiogram (ECG) or respiratory rate. ECG screening must be conducted after applying full anaesthesia, causing potential physical and emotional stress as well as risk for the animal. Here, we present an electronic system that simultaneously measures the ECG and the electrical bioimpedance for the early detection of abnormal cardiovascular activity. Modified gloves whose fingers are equipped with electrodes enable the caregiver to obtain three cardiovascular signals (ECG, pulse rate and respiratory rate) by placing the fingertips on specific parts of the non-human primate without needing any prior physical preparations. Validation (ECG and bioimpedance) was performed both on humans and on captive housed chimpanzees, where all the signals of interest were correctly acquired.
Collapse
Affiliation(s)
- Ernesto Serrano-Finetti
- Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Castelldefels School of Telecommunications and Aerospace Engineering, Universitat Politècnica de Catalunya, 08860 Barcelona, Spain
| | - Gemma Hornero
- Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Castelldefels School of Telecommunications and Aerospace Engineering, Universitat Politècnica de Catalunya, 08860 Barcelona, Spain
| | - Sergio Mainar
- Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Castelldefels School of Telecommunications and Aerospace Engineering, Universitat Politècnica de Catalunya, 08860 Barcelona, Spain
| | - Francisco López
- Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Castelldefels School of Telecommunications and Aerospace Engineering, Universitat Politècnica de Catalunya, 08860 Barcelona, Spain
| | | | - Olga Feliu
- Research Department, Fundació Mona, 17457 Girona, Spain
| | - Oscar Casas
- Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Castelldefels School of Telecommunications and Aerospace Engineering, Universitat Politècnica de Catalunya, 08860 Barcelona, Spain
| |
Collapse
|
7
|
Wang F, Yang L, Sun Y, Cai Y, Xu X, Liu Z, Liu Q, Zhao H, Ma C, Liu J. A Nanoclay-Enhanced Hydrogel for Self-Adhesive Wearable Electrophysiology Electrodes with High Sensitivity and Stability. Gels 2023; 9:gels9040323. [PMID: 37102935 PMCID: PMC10137570 DOI: 10.3390/gels9040323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Hydrogel-based wet electrodes are the most important biosensors for electromyography (EMG), electrocardiogram (ECG), and electroencephalography (EEG); but, are limited by poor strength and weak adhesion. Herein, a new nanoclay-enhanced hydrogel (NEH) has been reported, which can be fabricated simply by dispersing nanoclay sheets (Laponite XLS) into the precursor solution (containing acrylamide, N, N'-Methylenebisacrylamide, ammonium persulfate, sodium chloride, glycerin) and then thermo-polymerizing at 40 °C for 2 h. This NEH, with a double-crosslinked network, has nanoclay-enhanced strength and self-adhesion for wet electrodes with excellent long-term stability of electrophysiology signals. First of all, among existing hydrogels for biological electrodes, this NEH has outstanding mechanical performance (93 kPa of tensile strength and 1326% of breaking elongation) and adhesion (14 kPa of adhesive force), owing to the double-crosslinked network of the NEH and the composited nanoclay, respectively. Furthermore, this NEH can still maintain a good water-retaining property (it can remain at 65.4% of its weight after 24 h at 40 °C and 10% humidity) for excellent long-term stability of signals, on account of the glycerin in the NEH. In the stability test of skin-electrode impedance at the forearm, the impedance of the NEH electrode can be stably kept at about 100 kΩ for more than 6 h. As a result, this hydrogel-based electrode can be applied for a wearable self-adhesive monitor to highly sensitively and stably acquire EEG/ECG electrophysiology signals of the human body over a relatively long time. This work provides a promising wearable self-adhesive hydrogel-based electrode for electrophysiology sensing; which, will also inspire the development of new strategies to improve electrophysiological sensors.
Collapse
Affiliation(s)
- Fushuai Wang
- Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yiming Cai
- Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Xu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Hongliang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Jun Liu
- Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| |
Collapse
|
8
|
Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. BIOSENSORS 2023; 13:bios13010101. [PMID: 36671936 PMCID: PMC9855417 DOI: 10.3390/bios13010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Recently, advanced electrodes have been developed, such as semi-dry, dry contact, dry non-contact, and microneedle array electrodes. They can overcome the issues of wet electrodes and maintain high signal quality. However, the variations in these electrodes are still unclear and not explained, and there is still confusion regarding the feasibility of electrodes for different application scenarios. In this review, the physical features and electroencephalogram (EEG) signal performances of these advanced EEG electrodes are introduced in view of the differences in contact between the skin and electrodes. Specifically, contact features, biofeatures, impedance, signal quality, and artifacts are discussed. The application scenarios and prospects of different types of EEG electrodes are also elucidated.
Collapse
|
9
|
Liu Q, Zhou J, Yang L, Xie J, Guo C, Li Z, Qi J, Shi S, Zhang Z, Yang H, Hu J, Wu J, Zhang Y. A reversible gel-free electrode for continuous noninvasive electrophysiological signal monitoring. JOURNAL OF MATERIALS CHEMISTRY C 2023; 11:8866-8875. [DOI: 10.1039/d3tc00948c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
PPEM gel-free electrode for continuous noninvasive electrophysiological signal monitoring.
Collapse
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajia Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Chenhui Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215127, China
| | - Zimo Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jun Qi
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an, 237100, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|