1
|
Abdou Ahmed Abdou Elsehsah K, Ahmad Noorden Z, Mat Saman N. Current insights and future prospects of graphene aerogel-enhanced supercapacitors: A systematic review. Heliyon 2024; 10:e37071. [PMID: 39286138 PMCID: PMC11403540 DOI: 10.1016/j.heliyon.2024.e37071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Supercapacitors present a compelling alternative to conventional batteries, offering rapid energy storage and high power density. Despite their advantages, they typically fall short in energy density compared to traditional batteries, primarily due to limitations in electrode materials. Graphene Aerogels (GA) have emerged as a promising solution to enhance supercapacitor performance because of their unique properties, such as high surface area and excellent conductivity. This systematic review provides a comprehensive analysis of recent advancements in GA technology, focusing on their synthesis methods and applications in supercapacitors. It highlights significant improvements that GA can bring to Electric Double-Layer Capacitors (EDLCs), pseudocapacitors, and hybrid supercapacitors. Additionally, the review explores GA's potential for enhancing electric generators and integrating into flexible, wearable technologies. Future research directions are emphasised, particularly regarding GA's potential applications in waste management and environmental protection. The review was conducted through a thorough literature search, prioritising peer-reviewed sources related to GA synthesis and supercapacitor applications. Methodological quality and potential biases of the included studies were assessed using principles similar to the Cochrane Risk of Bias tool. Thematic analysis was employed to synthesise findings and identify key trends and challenges. Limitations such as potential biases and methodological variations are discussed. Overall, this review highlights the technological prospects of GA and provides guidance for future research in supercapacitor development and applications.
Collapse
Affiliation(s)
- Khaled Abdou Ahmed Abdou Elsehsah
- Institute of High Voltage and High Current, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zulkarnain Ahmad Noorden
- Institute of High Voltage and High Current, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Norhafezaidi Mat Saman
- Institute of High Voltage and High Current, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
2
|
Lv Y, Lu S, Xu W, Xin Y, Wang X, Wang S, Yu J. Application of dandelion-like Sm 2O 3/Co 3O 4/rGO in high performance supercapacitors. RSC Adv 2024; 14:2088-2101. [PMID: 38196908 PMCID: PMC10775768 DOI: 10.1039/d3ra06352f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Novel 2D material-based supercapacitors are promising candidates for energy applications due to their distinctive physical, chemical, and electrochemical properties. In this study, a dandelion-like structure material comprised of Sm2O3, Co3O4, and 2D reduced graphene oxide (rGO) on nickel foam (NF) was synthesised using a hydrothermal method followed by subsequent annealing treatment. This dandelion composite grows further through the tremella-like structure of Sm2O3 and Co3O4, which facilitates the diffusion of ions and prevents structural collapse during charging and discharging. A substantial number of active sites are generated during redox reactions by the unique surface morphology of the Sm2O3/Co3O4/rGO/NF composite (SCGN). The maximum specific capacity the SCGN material achieves is 3448 F g-1 for 1 A g-1 in a 6 mol L-1 KOH solution. Benefiting from its morphological structure, the prepared composite (SCGN) exhibits a high cyclability of 93.2% over 3000 charge-discharge cycles at 10 A g-1 and a coulombic efficiency of 97.4%. Additionally, the assembled SCGN//SCGN symmetric supercapacitors deliver a high energy density of 64 W h kg-1 with a power density of 300 W kg-1, which increases to an outstanding power density of 12 000 W kg-1 at 28.7 W h kg-1 and long cycle stability (80.9% capacitance retention after 30 000 cycles). These results suggest that the manufactured SCGN electrodes could be viable active electrode materials for electrochemical supercapacitors.
Collapse
Affiliation(s)
- Yanling Lv
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Shixiang Lu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Wenguo Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Yulin Xin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Xiaoyan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Shasha Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Jiaan Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| |
Collapse
|
3
|
Shen L, Dong J, Wen B, Wen X, Li J. Facile Synthesis of Hollow Fe 3O 4-rGO Nanocomposites for the Electrochemical Detection of Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040707. [PMID: 36839075 PMCID: PMC9964092 DOI: 10.3390/nano13040707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Acetaminophen (AC) is one of the most popular pharmacologically active substances used as an analgesic and antipyretic drug. Herein, a new type of hollow Fe3O4-rGO/GCE electrode was prepared for electrochemical detection of AC through a three-step approach involving a solvothermal method for the synthesis of hollow Fe3O4 and the chemical reduction of graphene oxide (GO) for reduced graphene oxide (rGO) and Fe3O4-rGO nanocomposites modified on the glassy carbon electrode (GCE) surface. The as-prepared Fe3O4-rGO nanocomposites were characterized using a transmission electron microscope (TEM), X-ray diffraction (XRD), and a magnetic measurement system (SQUID-VSM). The magnetic Fe3O4-rGO/GCE electrodes were employed for the electrochemical detection of AC using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV) and exhibited an ultra-high selectivity and accuracy, a low detection limit of 0.11 µmol/L with a wider linear range from 5 × 10-7 to 10-4 mol/L, and high recovery between 100.52% and 101.43%. The obtained Fe3O4-rGO-modified GCE displays great practical significance for the detection of AC in drug analysis.
Collapse
|
4
|
Rahman Ansari A, Ali Ansari S, Parveen N, Omaish Ansari M, Osman Z. Ag nanoparticles anchored reduced graphene oxide sheets@nickel oxide nanoflakes nanocomposites for enhanced capacitive performance of supercapacitors. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Li S, Fan J, Liao H, Xiao G, Gao S, Cui K, Niu C, Jin HG, Luo W, Chao Z. MnCoP/(Co,Mn)(Co,Mn)2O4 nanocomposites for all-solid-state supercapacitors with excellent electrochemical energy storage. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Gogoi D, Korde R, Chauhan VS, Patra MK, Roy D, Das MR, Ghosh NN. CoFe 2O 4 Nanoparticles Grown within Porous Al 2O 3 and Immobilized on Graphene Nanosheets: A Hierarchical Nanocomposite for Broadband Microwave Absorption. ACS OMEGA 2022; 7:28624-28635. [PMID: 35990457 PMCID: PMC9386821 DOI: 10.1021/acsomega.2c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Demands to develop efficient microwave-absorbing materials are increasing with the advancement of information technology and the exponential rise in the usage of electromagnetic devices. To reduce electromagnetic interference and to overcome the adverse effects caused by microwave exposure resulting from the excessive usage of electromagnetic devices, microwave absorbers are very necessary. In addition, radar-absorbing materials are essential for stealth technology in military applications. Herein, we report a nanocomposite in which CoFe2O4 (CF) nanoparticles were grown within the porous structure of Al2O3 (PA), and this CoFe2O4-loaded Al2O3 (PA-CF) nanocomposite was immobilized on the surface of nanometer-thin graphene sheets (Gr). Owing to the hierarchical structure created by the constituents, the (60PA-40CF)90-Gr10 nanocomposite exhibited excellent microwave-absorption properties in the X-band region with a reflection loss (RL) value of ∼-30.68 dB (∼99.9% absorption) at 10.71 and 9.04 GHz when thicknesses were 2.0 and 2.3 mm, respectively. This nanocomposite demonstrated its competence as a lightweight, high-performance microwave absorber in the X-band region, which can be utilized in the applications of pioneering stealth technology.
Collapse
Affiliation(s)
- Debika Gogoi
- Nano-Materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Sancoale, Goa 403726, India
| | - Raghavendra Korde
- Nano-Materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Sancoale, Goa 403726, India
| | | | - Manoj Kumar Patra
- Defence
Lab, Defence Research and Development Organisation, Jodhpur 342011, India
| | - Debmalya Roy
- Defence
Materials and Stores Research & Development Establishment (DMSRDE)
DRDO, Ministry of Defence, Government of India, PO DMSRDE, GT Road, Kanpur 208013, India
| | - Manash R. Das
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narendra Nath Ghosh
- Nano-Materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Sancoale, Goa 403726, India
| |
Collapse
|