1
|
Maity T, Sarkar S, Kundu S, Panda S, Sarkar A, Hammad R, Mandal K, Ghosh S, Mondal J, Haldar R. Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film. Nat Commun 2024; 15:9636. [PMID: 39516460 PMCID: PMC11549431 DOI: 10.1038/s41467-024-53207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The movement of molecules (i.e. diffusion) within angstrom-scale pores of porous materials such as metal-organic frameworks (MOFs) and zeolites is influenced by multiple complex factors that can be challenging to assess and manipulate. Nevertheless, understanding and controlling this diffusion phenomenon is crucial for advancing energy-economic membrane-based chemical separation technologies, as well as for heterogeneous catalysis and sensing applications. Through precise assessment of the factors influencing diffusion within a porous metal-organic framework (MOF) thin film, we have developed a chemical strategy to manipulate and reverse chemical isomer diffusion selectivity. In the process of cognizing the molecular diffusion within oriented, angstrom-scale channels of MOF thin film, we have unveiled a dynamic chemical interaction between the adsorbate (chemical isomers) and the MOF using a combination of kinetic mass uptake experiments and molecular simulation. Leveraging the dynamic chemical interactions, we have reversed the haloalkane (positional) isomer diffusion selectivity, forging a chemical pathway to elevate the overall efficacy of membrane-based chemical separation and selective catalytic reactions.
Collapse
Affiliation(s)
- Tanmoy Maity
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
- Haldia Institute of Technology, Department of Applied Science and Humanities, Hatiberia, ICARE Complex, Haldia, Purba Medinipur, West Bengal, 721657, India
| | - Susmita Sarkar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Susmita Kundu
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Suvendu Panda
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Arighna Sarkar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Raheel Hammad
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India.
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India.
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Jiang Y, Wang L, Yan T, Hu J, Sun W, Krishna R, Wang D, Gu Z, Liu D, Cui X, Xing H, Zhang Y. Insights into the thermodynamic-kinetic synergistic separation of propyne/propylene in anion pillared cage MOFs with entropy-enthalpy balanced adsorption sites. Chem Sci 2023; 14:298-309. [PMID: 36687342 PMCID: PMC9811657 DOI: 10.1039/d2sc05742e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Propyne/propylene (C3H4/C3H6) separation is an important industrial process yet challenged by the trade-off of selectivity and capacity due to the molecular similarity. Herein, record C3H4/C3H6 separation performance is achieved by fine tuning the pore structure in anion pillared MOFs. SIFSIX-Cu-TPA (ZNU-2-Si) displays a benchmark C3H4 capacity (106/188 cm3 g-1 at 0.01/1 bar and 298 K), excellent C3H4/C3H6 IAST selectivity (14.6-19.3) and kinetic selectivity, and record high C3H4/C3H6 (10/90) separation potential (36.2 mol kg-1). The practical C3H4/C3H6 separation performance is fully demonstrated by breakthroughs under various conditions. 37.8 and 52.9 mol kg-1 of polymer grade C3H6 can be produced from 10/90 and 1/99 C3H4/C3H6 mixtures. 4.7 mol kg-1 of >99% purity C3H4 can be recovered by a stepped desorption process. Based on the in situ single crystal analysis and DFT calculation, an unprecedented entropy-enthalpy balanced adsorption pathway is discovered. MD simulation further confirmed the thermodynamic-kinetic synergistic separation of C3H4/C3H6 in ZNU-2-Si.
Collapse
Affiliation(s)
- Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianbo Hu
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam Netherlands
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University Jiangsu 225009 China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Xili Cui
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Huabin Xing
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
3
|
Zapata Ballesteros A, De Witte N, Denayer JFM, Van Assche TRC. Effect of pellet size on PSA performance: monolayer and multilayer bed case study for biogas upgrading. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|