1
|
Paez-Muñoz JM, Gámez F, Fernández-Afonso Y, Gallardo R, Pernia Leal M, Gutiérrez L, de la Fuente JM, Caro C, García-Martín ML. Optimization of iron oxide nanoparticles for MRI-guided magnetic hyperthermia tumor therapy: reassessing the role of shape in their magnetocaloric effect. J Mater Chem B 2023; 11:11110-11120. [PMID: 37947078 DOI: 10.1039/d3tb01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated. Interestingly, spherical nanoparticles displayed significantly higher magnetic relaxivity than cubic nanoparticles; however, comparable differences were not observed in specific absorption rate (SAR), pointing out the need for additional research to better understand the connection between these two parameters. Additionally, the as-synthetized spherical nanoparticles showed negligible cytotoxicity and, therefore, were tested in vivo in tumor-bearing mice. Following intratumoral administration of these spherical nanoparticles and a single exposure to alternating magnetic fields (AMF) closely mimicking clinical conditions, a significant delay in tumor growth was observed. Although further in vivo experiments are warranted to optimize the magnetic hyperthermia conditions, our findings support the great potential of these nanoparticles as magnetic hyperthermia mediators for tumor therapy.
Collapse
Affiliation(s)
- José María Paez-Muñoz
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Francisco Gámez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Química Analítica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Roberto Gallardo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Química Analítica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
2
|
Redwan N, Tsegaye D, Abebe B. Synthesis of iron-magnetite nanocomposites for hexavalent chromium sorption. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
4
|
Khalaj M, Zarandi M. A Cu(ii) complex supported on Fe 3O 4@SiO 2 as a magnetic heterogeneous catalyst for the reduction of environmental pollutants. RSC Adv 2022; 12:26527-26541. [PMID: 36275142 PMCID: PMC9486508 DOI: 10.1039/d2ra04787j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Today, the presence of pollutants in the environment has become one of the serious problems and concerns of human beings. To eliminate these pollutants, researchers have made many efforts. One of the most important of these efforts is the reduction of such contaminants in the presence of effective catalysts. Two of the most important and widespread types of these pollutants are nitro compounds and organic dyes. In this paper, we report the synthesis of an efficient and reusable magnetic catalyst using Fe3O4@SiO2 core-shell nanoparticles (NPs), N-(4-bromophenyl)-N'-benzoylthiourea, and copper(ii). Specifically, the Cu(ii)-N-(4-bromophenyl)-N'-benzoylthiourea complex supported on Fe3O4-core magnetic NPs (CM)/SiO2-shell (SS) (CM@SS-BBTU-Cu(ii)) has been prepared. CM@SS-BBTU-Cu(ii) was characterized by FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), TEM (transmission electron microscopy), HRTEM (high resolution transmission electron microscopy), FFT (fast Fourier transform), VSM (vibrating sample magnetometry), TG-DTA (thermogravimetry-differential thermal analysis), STEM (scanning transmission electron microscopy), EDS (energy-dispersive X-ray spectroscopy), and elemental mapping. The synthesized CM@SS-BBTU-Cu(ii) was applied for the reduction of 4-nitrophenol (4-NP), Congo red (CR), and methylene blue (MB) in the presence of NaBH4 (sodium borohydride) at room temperature. CM@SS-BBTU-Cu(ii) can be recycled and reused 5 times. Our results displayed that the performance of the catalyst was not significantly reduced by recycling.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| | - Maryam Zarandi
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| |
Collapse
|
5
|
Scurti S, Caretti D, Mollica F, Di Antonio E, Amorati R. Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11061163. [PMID: 35740061 PMCID: PMC9219998 DOI: 10.3390/antiox11061163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.
Collapse
Affiliation(s)
- Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Erika Di Antonio
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
- Correspondence:
| |
Collapse
|