1
|
Puttaningaiah KPCH, Hur J. Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors. MICROMACHINES 2024; 15:1061. [PMID: 39337721 PMCID: PMC11433738 DOI: 10.3390/mi15091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Biosensors are smart devices that convert biochemical responses to electrical signals. Designing biosensor devices with high sensitivity and selectivity is of great interest because of their wide range of functional operations. However, the major obstacles in the practical application of biosensors are their binding affinity toward biomolecules and the conversion and amplification of the interaction to various signals such as electrical, optical, gravimetric, and electrochemical signals. Additionally, the enhancement of sensitivity, limit of detection, time of response, reproducibility, and stability are considerable challenges when designing an efficient biosensor. In this regard, hybrid composites have high sensitivity, selectivity, thermal stability, and tunable electrical conductivities. The integration of phthalocyanines (Pcs) with conductive materials such as carbon nanomaterials or metal nanoparticles (MNPs) improves the electrochemical response, signal amplification, and stability of biosensors. This review explores recent advancements in hybrid Pcs for biomolecule detection. Herein, we discuss the synthetic strategies, material properties, working mechanisms, and integration methods for designing electrochemical biosensors. Finally, the challenges and future directions of hybrid Pc composites for biosensor applications are discussed.
Collapse
Affiliation(s)
| | - Jaehyun Hur
- Department of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
3
|
Keshipour S, Eyvari-Ashnak F. Chitosan-Derived Nitrogen-Doped Carbon as a Support of Cobalt(II)-Phthalocyanine/Gold Nanoparticles for Photocatalytic Water Splitting. ACS OMEGA 2023; 8:41624-41632. [PMID: 37970060 PMCID: PMC10633874 DOI: 10.1021/acsomega.3c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Water splitting is considered one of the worthy approaches to generate hydrogen as a green fuel with diverse applications. Promoting this reaction with the photocatalytic strategy enjoys a free source of solar energy, without the use of expensive instruments. In this research, gold nanoparticles and cobalt(II)-phthalocyanine were deposited on nitrogen-doped carbon, obtained from chitosan, to afford a photocatalytic water splitting at the rate of 792 mol molAu-1 h-1. Gold as the catalyst in contact with cobalt(II)-phthalocyanine as the sensitizer and nitrogen-doped carbon as the support/semiconductor provided a desired heterojunction for the photocatalytic purpose. The nanocomposite showed remarkable light harvesting in the region of visible light with a band gap of 2.01 eV. While a facile protocol to the synthesis of the mentioned photocatalyst by a simple thermal treatment of cobalt(II)-phthalocyanine and chitosan could be invaluable, this research pointed out the significance of cobalt(II)-phthalocyanine as the sensitizer in the gold photocatalytic transformations.
Collapse
Affiliation(s)
- Sajjad Keshipour
- Department of Nanotechnology, Faculty
of Chemistry, Urmia University, Urmia 57179-44514, Iran
| | - Faezeh Eyvari-Ashnak
- Department of Nanotechnology, Faculty
of Chemistry, Urmia University, Urmia 57179-44514, Iran
| |
Collapse
|
4
|
Holey SA, Basak P, Bojja S, Nayak RR. The fabrication of bifunctional supramolecular glycolipid-based nanocomposite gel: insights into electrocatalytic performance with effective selectivity towards gold. SOFT MATTER 2023; 19:6305-6313. [PMID: 37555430 DOI: 10.1039/d3sm00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recovery, recycling, and reuse of metal waste have been re-intensified in the current era to build a sustainable future. In this context, gel nanocomposites were formulated by in situ reduction of gold within the low molecular weight gel matrix of synthetic glycolipid amphiphiles without using any external reducing/stabilizing agents. This strategy aroused the interest in formulating gel nanocomposites with preferential uptake of gold. The exclusive advantages owned by gold nanoparticle (GNP) embedded hydrogel offer an alternative to decorate the electrode surface without physical deposition/plating of the catalyst. Formation of GNP within the gel matrix was confirmed by the SPR peak in the UV-Visible spectrum. The particle size of 5-7 nm with zeta potential value in the range of -30.5 to -41.4 mV displayed good stability of nanoparticles in the gel matrix. Due to the encapsulation of nanoparticles within supramolecular assemblies of gel, a noteworthy increase in viscoelastic strength was observed, whereas the gelation behavior, melting temperature, and original fibrillar morphology of hydrogel remained intact. This hybrid gel exhibited good ionic conductivity (2.36 × 10-5 S cm-1) with appreciable ionic transport, remarkable oxygen reduction reaction (ORR) augmentation in reduction potential from 0 V to -0.12 V vs. Ag/AgCl as reference electrode, and excellent thermal stability in a wide temperature range. This green and efficient approach can pave the way for creating GNP-embedded hierarchical architecture that can act as bifunctional electrolyte/electrocatalyst material.
Collapse
Affiliation(s)
- Snehal Ashokrao Holey
- Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pratyay Basak
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sreedhar Bojja
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rati Ranjan Nayak
- Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Florent M, Bandosz TJ. Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4432. [PMID: 36558284 PMCID: PMC9782998 DOI: 10.3390/nano12244432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Highly porous carbon black and micro/mesoporous activated carbon were impregnated with cobalt and nickel nitrates, followed by heat treatment at 850 °C in nitrogen. Detailed information about chemistry and porosity was obtained using XPS, XRD, TEM/EDX, and nitrogen adsorption. The samples were used as ORR catalysts. Marked differences in the performance were found depending on the type of carbon. Differences in surface chemistry and porosity affected the chemistry of the deposited metal species that governed the O2 reduction efficiency along with other features of the carbon supports, including electrical conductivity and porosity. While dissociating surface acidic groups promoted the high dispersion of small metal species, carbon reactivity with oxygen and acidity limited the formation of the most catalytically active Co3O4. Formation of Co3O4 on the highly conductive carbon black resulted in an excellent performance with four electrons transferred and a current density higher than that on Pt/C. When Co3O4 was not formed in a sufficient quantity, nickel metal nanoparticles promoted ORR on the Ni/Co-containing samples. The activity was also significantly enhanced by small pores that increased the ORR efficiency by strongly adsorbing oxygen, which led to its bond splitting, followed by the acceptance of four electrons.
Collapse
|
6
|
Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Co-NC catalysts have attracted extensive concerns derived from their high oxygen reduction reaction (ORR) activity, but the catalytic mechanism of Co species with different forms remains controversial. Herein, we prepare Co-NC catalysts with a cobalt nanoparticle-supported and nitrogen-doped carbon structure using the ZIF-67 precursor, in which the Co states in the catalyst present an asymmetric state of an exposed carbon coating (Asy-Co) and a symmetric state of buried carbon (Sy-Co). The acid etching process removed the exposed asymmetric cobalt nanoparticles on the surface. The specific role of cobalt nanoparticles with different forms in the Co-NC catalysts was comprehensively clarified through analyzing the chemical coordination environment by XPS and XAFS. The half-wave potential (E1/2 = 0.83 V) and onset potential (Eon = 1.04 V) of the Co-NC catalysts obtained after acid etching decreased significantly. Thus, the cobalt species removed by the acid etching process offered confirmed contributions to the catalytic activity. This work puts forward an important reference for the design and exploitation of non-noble metal catalysts using symmetry-derived motifs.
Collapse
|
7
|
Balogun SA, Fayemi OE. Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. BIOSENSORS 2022; 12:850. [PMID: 36290988 PMCID: PMC9599089 DOI: 10.3390/bios12100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Cobalt phthalocyanine multiwalled carbon nanotubes (CoPc-MWCNTs), a nanocomposite, are extraordinary electrochemical sensing materials. This material has attracted growing interest owing to its unique physicochemical properties. Notably, the metal at the center of the metal phthalocyanine structure offers an enhanced redox-active behavior used to design solid electrodes for determining varieties of analytes. This review extensively discusses current developments in CoPc-MWCNTs nanocomposites as potential materials for electrochemical sensors, along with their different fabrication methods, modifying electrodes, and the detected analytes. The advantages of CoPc-MWCNTs nanocomposite as sensing material and its future perspectives are carefully reviewed and discussed.
Collapse
Affiliation(s)
- Sheriff A. Balogun
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| |
Collapse
|
8
|
Yahya R, Shah A, Kokab T, Ullah N, Hakeem MK, Hayat M, Haleem A, Shah I. Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye. ACS OMEGA 2022; 7:34154-34165. [PMID: 36188263 PMCID: PMC9520707 DOI: 10.1021/acsomega.2c03472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In this work, a simple and sensitive electrochemical method was developed to determine ethyl violet (EV) dye in aqueous systems by using square wave anodic stripping voltammetry (SWASV) employing a glassy carbon electrode modified with acidic-functionalized carbon nanotubes (COOH-fCNTs). In square wave anodic stripping voltammetry, EV exhibited a well-defined oxidation peak at 0.86 V at the modified GCE. Impedance spectroscopy and cyclic voltammetry were used to examine the charge transduction and sensing capabilities of the modified electrode. The influence of pH, deposition potential, and accumulation time on the electro-oxidation of EV was optimized. Under the optimum experimental conditions, the limit of detection with a value of 0.36 nM demonstrates high sensitivity of COOH-fCNTs/GCE for EV. After detection, it was envisioned to devise a method for the efficient removal of EV from an aqueous system. In this regard a photocatalytic degradation method of EV using Ho/TiO2 nanoparticles was developed. The Ho/TiO2 nanoparticles synthesized by the sol-gel method were characterized by UV-vis, XRD, FTIR, SEM, and EDX. The photocatalytic degradation studies revealed that basic medium is more suitable for a higher degradation rate of EV than acidic and neutral media. The photodegradation kinetic parameters were evaluated using UV-vis spectroscopic and electrochemical methods. The results revealed that the degradation process of EV follows first-order kinetics.
Collapse
Affiliation(s)
- Rashida Yahya
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Tayyaba Kokab
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Naimat Ullah
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | | | - Mazhar Hayat
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Abdul Haleem
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Iltaf Shah
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|