1
|
Zhuang X, Zhu H, Wang F, Hu X. Revolutionizing wild silk fibers: Ultrasound enhances structure, properties, and regenerability of protein biomaterials in ionic liquids. ULTRASONICS SONOCHEMISTRY 2024; 109:107018. [PMID: 39128406 DOI: 10.1016/j.ultsonch.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Ultrasound-assisted regulation of biomaterial properties has attracted increasing attention due to the unique reaction conditions induced by ultrasound cavitation. In this study, we explored the fabrication of wild tussah silk nanofiber membranes via ultrasound spray spinning from an ionic liquid system, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), water contact angle, cytocompatibility tests, and enzymatic degradation studies. We investigated the effects of ultrasound propagation in an ionic liquid on the morphology, structure, thermal and mechanical properties, surface hydrophilicity, biocompatibility, and biodegradability of the fabricated fibers. The results showed that as ultrasound treatment time increased from 0 to 60 min, the regenerated silk fiber diameter decreased by 0.97 μm and surface area increased by 30.44 μm2, enhancing the fiber surface smoothness and uniformity. Ultrasound also promoted the rearrangement of protein molecular chains and transformation of disordered protein structures into β-sheets, increasing the β-sheet content to 54.32 %, which significantly improved the materials' thermal stability (with decomposition temperatures rising to 256.38 °C) and mechanical properties (elastic modulus reaching 0.75 GPa). In addition, hydrophilicity, cytocompatibility, and biodegradability of the fiber membranes all improved with longer ultrasound exposure, highlighting the potential of ultrasound technology in advancing the properties of natural biopolymers for applications in sustainable materials science and tissue regeneration.
Collapse
Affiliation(s)
- Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Haomiao Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
2
|
Cao X, Chen Y, Zhang C, Mao Z, Zhang J, Ma T, Tian W, Kong X, Li H, Rao S, Yang K. Heterogeneous nucleation induced A. pernyi/B. mori silk fibroin coatings on AZ31 biometals with enhanced corrosion resistance, adhesion and biocompatibility. Int J Biol Macromol 2024; 264:130524. [PMID: 38442832 DOI: 10.1016/j.ijbiomac.2024.130524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Silk fibroin coatings on biomedical magnesium alloys have garnered significant attention due to their enhanced corrosion resistance and biocompatibility. However, the utilization of wild A. pernyi silk fibroin, known for its RGD sequence that facilitates tissue regeneration, presents a challenge for corrosion-resistant coatings on magnesium alloys due to its weak adhesion and high dissolution rate. In this study, we employed hexafluoroisopropanol as a solvent to blend A. pernyi silk fibroin with B. mori silk fibroin. The resulting blended fibroin coating at a 3:7 mass ratio exhibited a heterogeneous nucleation effect, enhancing β-sheet content (32.3 %) and crystallinity (28.6 %). This improved β-sheet promoted the "labyrinth effect" with an Icorr of 2.15 × 10-6 A cm-2, resulting in significantly improved corrosion resistance, which is two orders of magnitude lower than that of pure magnesium alloy. Meanwhile, the increased content of exposed serine in zigzag β-sheet contributes to a higher adhesion strength. Cell cytotoxicity evaluation confirmed the enhanced cell adhesion and bioactivity. This work provides a facile approach for wild A. pernyi silk fibroin coatings on magnesium alloys with enhanced corrosion resistance, adhesion and biocompatibility.
Collapse
Affiliation(s)
- Xinru Cao
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yanning Chen
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Chen Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jingwu Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Tingji Ma
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Wenhan Tian
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiangsheng Kong
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Haotong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Sixian Rao
- School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China; School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, China.
| |
Collapse
|
3
|
Wang D, Zhou X, Cao H, Zhang H, Wang D, Guo J, Wang J. Barrier membranes for periodontal guided bone regeneration: a potential therapeutic strategy. FRONTIERS IN MATERIALS 2023; 10. [DOI: 10.3389/fmats.2023.1220420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Periodontal disease is one of the most common oral diseases with the highest incidence world-wide. In particular, the treatment of periodontal bone defects caused by periodontitis has attracted extensive attention. Guided bone regeneration (GBR) has been recognized as advanced treatment techniques for periodontal bone defects. GBR technique relies on the application of barrier membranes to protect the bone defects. The commonly used GBR membranes are resorbable and non-resorbable. Resorbable GBR membranes are divided into natural polymer resorbable membranes and synthetic polymer resorbable membranes. Each has its advantages and disadvantages. The current research focuses on exploring and improving its preparation and application. This review summarizes the recent literature on the application of GBR membranes to promote the regeneration of periodontal bone defects, elaborates on GBR development strategies, specific applications, and the progress of inducing periodontal bone regeneration to provide a theoretical basis and ideas for the future application of GBR membranes to promote the repair of periodontal bone defects.
Collapse
|
4
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
5
|
Zhu M, Duan B, Hou K, Mao L, Wang X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J Biomed Mater Res B Appl Biomater 2023; 111:568-578. [PMID: 36214252 DOI: 10.1002/jbm.b.35174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023]
Abstract
The porcine-derived non-cross-linked collagen membrane Bio-gide® (BG) and the bovine-derived non-cross-linked collagen membrane Heal-all® (HA) were compared to better understand their in vitro biophysical characteristics and in vivo degradation patterns as a reference for clinical applications. It was showed that the porosity, specific surface area, pore volume and pore diameter of BG were larger than those of HA (64.5 ± 5.2% vs. 48.6 ± 6.1%; 18.6 ± 2.8 m2 /g vs. 2.3 ± 0.6 m2 /g; 0.114 ± 0.002 cm3 /g vs. 0.003 ± 0.001 cm3 /g; 24.4 ± 3.5 nm vs. 7.3 ± 1.7 nm, respectively); the average swelling ratio of BG was higher than that of HA (412.6 ± 41.2% vs. 270.0 ± 2.7%); the tensile strength of both dry and wet HA was higher than those of BG (18.26 ± 3.27 MPa vs. 4.02 ± 1.35 MPa; 2.24 ± 0.21 MPa vs. 0.16 ± 0.02 MPa, respectively); 73% of HA remained after 72 h in collagenase solution, whereas only 8.2% of BG remained. A subcutaneous rat implantation model revealed that, at 3, 7, 14, 28, and 56 days postmembrane implantation, there were more total inflammatory cells, especially more M1 and M2 polarized macrophages and higher M2/M1 ratio in BG than in HA; in addition, the fibrous capsule around BG was also thicker than that around HA. Moreover, concentrations of dozens of cytokines including interleukin-2(IL-2), IL-7, IL-10 and so forth. in BG were higher than those in HA. It is suggested that BG and HA might be suitable for different clinical applications according to their different characteristics.
Collapse
Affiliation(s)
- Mengdi Zhu
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Beibei Duan
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Kegui Hou
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Lisha Mao
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Xuejiu Wang
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|