1
|
Morcos CA, Haiba NS, Bassily RW, Abu-Serie MM, El-Yazbi AF, Soliman OA, Khattab SN, Teleb M. Structure optimization and molecular dynamics studies of new tumor-selective s-triazines targeting DNA and MMP-10/13 for halting colorectal and secondary liver cancers. J Enzyme Inhib Med Chem 2024; 39:2423174. [PMID: 39513468 PMCID: PMC11552285 DOI: 10.1080/14756366.2024.2423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
A series of triazole-tethered triazines bearing pharmacophoric features of DNA-targeting agents and non-hydroxamate MMPs inhibitors were synthesized and screened against HCT-116, Caco-2 cells, and normal colonocytes by MTT assay. 7a and 7g surpassed doxorubicin against HCT-116 cells regarding potency (IC50 = 0.87 and 1.41 nM) and safety (SI = 181.93 and 54.41). 7g was potent against liver cancer (HepG-2; IC50 = 65.08 nM), the main metastatic site of CRC with correlation to MMP-13 expression. Both derivatives induced DNA damage at 2.67 and 1.87 nM, disrupted HCT-116 cell cycle and triggered apoptosis by 33.17% compared to doxorubicin (DNA damage at 0.76 nM and 40.21% apoptosis induction). 7g surpassed NNGH against MMP-10 (IC50 = 0.205 μM) and MMP-13 (IC50 = 0.275 μM) and downregulated HCT-116 VEGF related to CRC progression by 38%. Docking and MDs simulated ligands-receptors binding modes and highlighted SAR. Their ADMET profiles, drug-likeness and possible off-targets were computationally predicted.
Collapse
Affiliation(s)
- Christine A. Morcos
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nesreen S. Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Rafik W. Bassily
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Egypt
| | - Amira F. El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Omar A. Soliman
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| |
Collapse
|
2
|
Feng S, Peng X, Wu Y, Lei N, Cheng C, Deng Y, Yu X. Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo. ACS Biomater Sci Eng 2024; 10:7086-7099. [PMID: 39365184 DOI: 10.1021/acsbiomaterials.4c01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu3+ released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yuchong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Lim HY, Dolzhenko AV. 1,3,5-Triazine as a promising scaffold in the development of therapeutic agents against breast cancer. Eur J Med Chem 2024; 276:116680. [PMID: 39018924 DOI: 10.1016/j.ejmech.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
1,3,5-Triazine scaffold has garnered considerable interest due to its wide-ranging pharmacological properties, particularly in the field of cancer research. Breast cancer is the most commonly diagnosed cancer among women. Approximately one in eight women will receive a diagnosis of invasive breast cancer during their lifetime. The five-year survival rate for invasive breast cancer is less than 30 %, indicating a need to develop a more effective therapeutic agent targeting breast cancer. This review discusses bioactive 1,3,5-triazines targeting breast cancer cells by the inhibition of different enzymes, which include PI3K, mTOR, EGFR, VEGFR, FAK, CDK, DHFR, DNA topoisomerase, ubiquitin-conjugating enzyme, carbonic anhydrase, and matrix metalloproteinase. The anticancer agent search in some drug discovery programs is based on compound screening for antiproliferative activity. Often, multiple targets contribute to the anticancer effect of 1,3,5-triazines and this approach allows identification of active molecules prior to identification of their targets.
Collapse
Affiliation(s)
- Han Yin Lim
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia.
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western, Bentley, 6845, Australia
| |
Collapse
|
4
|
Nair CR, Sreejalekshmi K. Building synergistic nanoplatforms via dendrimer-small organic molecule handshakes: Heterocycle ligation as a promising strategy. MATERIALS TODAY CHEMISTRY 2024; 38:102099. [DOI: 10.1016/j.mtchem.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Khalil HH, El-Sheshtawy MM, Khattab SN, Abu-Serie MM, Shehat MG, Teleb M, Haiba NS. Chemosensitization of non-small cell lung cancer to sorafenib via non-hydroxamate s-triazinedione-based MMP-9/10 inhibitors. Bioorg Chem 2024; 144:107155. [PMID: 38306827 DOI: 10.1016/j.bioorg.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Non-small cell lung cancer (NSCLC) continues to be a leading cause of cancer death. Its fatality is associated with angiogenesis and metastasis. While VEGFR inhibitors are expected to be the central pillar for halting lung cancer, several clinical reports declared their subpar activities as monotherapy. These results directed combination studies of VEGFR inhibitors, especially sorafenib (Nexavar®), with various chemotherapeutic agents. Matrix metalloproteinase (MMP) inhibitors are seldom utilized in such combinations despite the expected complementary therapeutic outcome. This could be attributed to the clinical unsuitability of MMP inhibitors from the hydroxamate family. Herein, we report new non-hydroxamate s-triazinedione-based inhibitors of MMP-9 (6b; IC50 = 0.112 μM), and MMP-10 (6e; IC50 = 0.076 μM) surpassing the hydroxamate inhibitor NNGH for chemosensitization of NSCLC to sorafenib. MMPs inhibition profiling of the hits revealed MMP-9 over -2 and MMP-10 over -13 selectivity. 6b and 6e were potent (IC50 = 0.139 and 0.136 µM), safe (SI up to 6.77) and superior to sorafenib (IC50 = 0.506 µM, SI = 6.27) against A549 cells. When combined with sorafenib, the studied MMP inhibitors enhanced its cytotoxic efficacy up to 26 folds as confirmed by CI and DRI values for 6b (CI = 0.160 and DRI = 22.175) and 6e (CI = 0.096 and DRI = 29.060). 6b and 6e exerted anti-invasive activities in A549 cells as single agents (22.66 and 39.67 %) and in sorafenib combinations (29.96 and 91.83 %) compared to untreated control. Both compounds downregulated VEGF in A549 cells by approximately 70 % when combined with sorafenib, highlighting enhanced anti-angiogenic activities. Collectively, combinations of 6b and 6e with sorafenib demonstrated synergistic NSCLC cytotoxicity with pronounced anti-invasive and anti-angiogenic activities introducing a promising start point for preclinical studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed M El-Sheshtawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
6
|
Morcos CA, Khattab SN, Haiba NS, Bassily RW, Abu-Serie MM, Teleb M. Battling colorectal cancer via s-triazine-based MMP-10/13 inhibitors armed with electrophilic warheads for concomitant ferroptosis induction; the first-in-class dual-acting agents. Bioorg Chem 2023; 141:106839. [PMID: 37703744 DOI: 10.1016/j.bioorg.2023.106839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in halting CRC by combining ferroptosis with other forms of tumor cell death. However, ferroptosis induction is seldom studied in tandem with inhibiting MMPs. A combination that is expected to enhance the therapeutic outcome based on mechanistic ferroptosis studies highlighting the interplay with MMPs, especially MMP-13 associated with CRC metastasis and poor prognosis. Herein, we report new hybrid triazines capable of simultaneous MMP-10/13 inhibition and ferroptosis induction bridging the gap between their anticancer potentials. The MMP-10/13 inhibitory component of the scaffold was based on the non-hydroxamate model inhibitors. s-Triazine was rationalized as the core inspired by altretamine, an FDA-approved ferroptosis inducer. The ferroptosis pharmacophores were then installed as Michael acceptors via triazole-based spacers. The electrophilic reactivity was tuned by incorporating cyano and/or substituted phenyl groups influencing their electronic and steric properties and enriching the SAR study. Initial screening revealed the outstanding cytotoxicity profiles of the nitrophenyl-tethered chalcone 5e and the cyanoacrylohydrazides bearing p-fluorophenyl 9b and p-bromophenyl 9d appendages. 9b and 9d surpassed NNGH against MMP-10 and -13, especially 9d (IC50 = 0.16 μM). Ferroptosis studies proved that 9d depleted GSH in HCT-116 cells by a relative fold decrement of 0.81 with modest direct GPX4 inhibition, thus inducing lipid peroxidation, the hallmark of ferroptosis, by 1.32 relative fold increment. Docking presumed that 9d could bind to the MMP-10 S1' pocket and active site His221, extend through the MMP-13 hydrophobic pocket, and interact covalently with the GPX4 catalytic selenocysteine. 9d complexed with ferrous oxide nanoparticles was 7.5 folds more cytotoxic than its free precursor against HCT-116 cells. The complex-induced intracellular iron overload, depleted GSH with a relative fold decrement of 0.12, consequently triggering lipid peroxidation and ferroptosis by a 3.94 relative fold increment. Collectively, 9d could be a lead for tuning MMPs selectivity and ferroptosis induction potential to maximize the benefit of such a combination.
Collapse
Affiliation(s)
- Christine A Morcos
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| | - Rafik W Bassily
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Balakina A, Gadomsky S, Kokovina T, Sashenkova T, Mishchenko D, Terentiev A. New Derivatives of N-Hydroxybutanamide: Preparation, MMP Inhibition, Cytotoxicity, and Antitumor Activity. Int J Mol Sci 2023; 24:16360. [PMID: 38003553 PMCID: PMC10671431 DOI: 10.3390/ijms242216360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the inhibition of MMP-2, MMP-9, and MMP-14 with an IC50 of 1-1.5 μM. All the compounds exhibited low toxicity towards carcinoma cell lines HeLa and HepG2. The iodoaniline derivative was also slightly toxic to glioma cell lines A-172 and U-251 MG. Non-cancerous FetMSC and Vero cells were found to be the least sensitive to all the compounds. In vivo studies demonstrated that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide had low acute toxicity. In a mouse model of B16 melanoma, this compound showed both antitumor and antimetastatic effects, with a 61.5% inhibition of tumor growth and an 88.6% inhibition of metastasis. Our findings suggest that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide has potential as a lead structure for the development of new MMP inhibitors. Our new synthetic approach can be a cost-effective method for the synthesis of inhibitors of metalloenzymes with promising antitumor potential.
Collapse
Affiliation(s)
- Anastasia Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
| | - Svyatoslav Gadomsky
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
| | - Tatyana Kokovina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
- Faculty of Fundamental Physical-Chemical Engineering of M.V. Lomonosov MSU, Leninskie Gory, 119991 Moscow, Russia
| | - Tatyana Sashenkova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
| | - Denis Mishchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
- Faculty of Fundamental Physical-Chemical Engineering of M.V. Lomonosov MSU, Leninskie Gory, 119991 Moscow, Russia
- Scientific and Educational Center in Chernogolovka, State University of Education, 141014 Mytishchi, Russia
| | - Alexei Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
- Faculty of Fundamental Physical-Chemical Engineering of M.V. Lomonosov MSU, Leninskie Gory, 119991 Moscow, Russia
- Scientific and Educational Center in Chernogolovka, State University of Education, 141014 Mytishchi, Russia
| |
Collapse
|
8
|
Rashid ZA, Bardaweel SK. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int J Mol Sci 2023; 24:12133. [PMID: 37569509 PMCID: PMC10418771 DOI: 10.3390/ijms241512133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.
Collapse
Affiliation(s)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
9
|
Dai Q, Sun Q, Ouyang X, Liu J, Jin L, Liu A, He B, Fan T, Jiang Y. Antitumor Activity of s-Triazine Derivatives: A Systematic Review. Molecules 2023; 28:molecules28114278. [PMID: 37298753 DOI: 10.3390/molecules28114278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
1,3,5-triazine derivatives, also called s-triazines, are a series of containing-nitrogen heterocyclic compounds that play an important role in anticancer drug design and development. To date, three s-triazine derivatives, including altretamine, gedatolisib, and enasidenib, have already been approved for refractory ovarian cancer, metastatic breast cancer, and leukemia therapy, respectively, demonstrating that the s-triazine core is a useful scaffold for the discovery of novel anticancer drugs. In this review, we mainly focus on s-triazines targeting topoisomerases, tyrosine kinases, phosphoinositide 3-kinases, NADP+-dependent isocitrate dehydrogenases, and cyclin-dependent kinases in diverse signaling pathways, which have been extensively studied. The medicinal chemistry of s-triazine derivatives as anticancer agents was summarized, including discovery, structure optimization, and biological applications. This review will provide a reference to inspire new and original discoveries.
Collapse
Affiliation(s)
- Qiuzi Dai
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Qinsheng Sun
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiaorong Ouyang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Jinyang Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Liye Jin
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Ahao Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Binsheng He
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|