1
|
Saruchi, Kumar V, Mittal H, Ansar S. Synthesis and characterization of Gellan gum-based hydrogels for the delivery of anticancer drug etoposide. Int J Biol Macromol 2024; 278:135007. [PMID: 39181355 DOI: 10.1016/j.ijbiomac.2024.135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Present research work reports the synthesis of Gellan gum (Gg) and methacrylic acid (MA) based grafted hydrogels (Gg-cl-poly(MA)) crosslinked using N, N'- methylene-bis-acrylamide (MBA) and the evaluation of their efficiency to be used as a sustained drug delivery carrier for anticancer drug i.e., etoposide. Various characterization techniques like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the grafting of Gg with MA and the formation of crosslinked Gg-cl-poly(MA) hydrogel polymer. The synthesized hydrogel showed pH-dependent swelling properties and exhibited a maximum swelling capacity of 867 % under optimized environmental conditions. The Gg-cl-poly(MA) was biocompatible and non-cytotoxic, which was confirmed by the hemolytic and cytotoxic tests. The release dynamics of etoposide from the Gg-cl-poly(MA) polymer matrix was checked under specific physiological conditions. Drug release was found to be significantly higher in the acidic medium, followed by the neutral and alkaline medium. This clearly indicated that etoposide drug release through synthesized hydrogel was stomach-specific and it is effective for the treatment of stomach cancer. The release mechanism of the etoposide drug was a Fickian-type diffusion mechanism in the acidic medium and a non-Fickian-type diffusion mechanism in the neutral and alkaline medium. The release profile of the etoposide was best fitted to the first-order rate model. The results showed that the synthesized hydrogel (i.e., Gg-cl-poly(MA)) was biocompatible, non-toxic, and could be used for the treatment of stomach cancer.
Collapse
Affiliation(s)
- Saruchi
- Department of Paramedical Sciences, St. Soldier Institute of Pharmacy, Jalandhar, Punjab, India.
| | - Vaneet Kumar
- Department of Applied Sciences, CT Institute of Engineering, Management and Technology, Shahpur Campus Jalandhar, Punjab, India.
| | - Hemant Mittal
- DEWA R&D Center, Dubai Electricity & Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
2
|
Al-Maharik N, Salama Y, Al-Hajj N, Jaradat N, Jobran NT, Warad I, Hamdan L, Alrob MA, Sawafta A, Hidmi A. Chemical composition, anticancer, antimicrobial activity of Aloysia citriodora Palau essential oils from four different locations in Palestine. BMC Complement Med Ther 2024; 24:94. [PMID: 38365676 PMCID: PMC10870676 DOI: 10.1186/s12906-024-04390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
The primary aim of this investigation was to determine the anticancer and antimicrobial properties of essential oils (EOs) extracted from the leaves of Aloysia citriodora Palau, which were procured from four separate locations in Palestine, in addition to analyzing their chemical composition. These areas include Jericho, which has the distinction of being the lowest location on Earth, at 260 m below sea level. The EOs were acquired by hydrodistillation, and their chemical composition was examined utilizing gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentration (MIC) of EOs was assessed against six bacterial strains and one fungal species using 96-well microtiter plates. The primary components found in these oils are geranial (26.32-37.22%), neral (18.38-29.00%), and α-curcumene (7.76-16.91%) in three regions. α-Curcumene (26.94%), spathulenol (13.69%), geranial (10.79%), caryophyllene oxide (8.66%), and neral (7.59%) were found to be the most common of the 32 chemical components in the EO from Jericho. The EOs exhibited bactericidal properties, particularly against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and showed highly effective fungicidal activity. Nevertheless, the antifungal efficacy of the EO was found to surpass its antibacterial activity when administered at lower dosages. The EOs exhibited anticancer activities against melanoma cancer cells, as indicated by their IC50 values, which ranged from 4.65 to 7.96 μg/mL. A. citriodora EO possesses substantial antifungal and anticancer characteristics, rendering it appropriate for utilization in food-related contexts, hence potentially enhancing the sustainability of the food sector.
Collapse
Affiliation(s)
- Nawaf Al-Maharik
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine.
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, 00970, Palestine
| | - Nisreen Al-Hajj
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Naji Thaer Jobran
- Department of Chemistry, Faculty of Sciences, Birzeit University, Birzeit, P.O. Box. 7, Palestine
| | - Ismael Warad
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Lina Hamdan
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Moataz Abo Alrob
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Nablus, 99900800, Palestine
| | - Asil Sawafta
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, 00970, Palestine
| | - Adel Hidmi
- Department of Chemistry, Faculty of Sciences, Birzeit University, Birzeit, P.O. Box. 7, Palestine
| |
Collapse
|
3
|
Eze FN, Jayeoye TJ, Eze RC, Ovatlarnporn C. Construction of carboxymethyl chitosan/PVA/chitin nanowhiskers multicomponent film activated with Cotylelobium lanceolatum phenolics and in situ SeNP for enhanced packaging application. Int J Biol Macromol 2024; 255:128073. [PMID: 37972834 DOI: 10.1016/j.ijbiomac.2023.128073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/28/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
This work focused on the construction of bioactive packaging films based on carboxymethyl chitosan and poly(vinyl alcohol) (CMP) as polymeric matrix and fortified with chitin nanowhiskers, Cotylelobium lanceolatum phenolic extract (CL) and in situ synthesized nano selenium. Extensive morphological, microstructural, physical and mechanical analysis revealed that the nanofillers were well-dispersed and integrated into CMP matrix. Incorporation of the extract and nano selenium produced excellent UV blocking properties without seriously compromising the transparency of the composite (CMP/CNW/CLNS1) film. Moreover, blending of CMP with the filler materials significantly elevated (p < 0.05) the surface hydrophobicity (WCA by 35.4°), water barrier (by 53.86 %), tensile strength (from 29.35 to 33.09 MPa), elongation at break (from 64.28 to 96.48 %), and thermal properties of the resultant CMP/CNW/CLNS1 film, with concomitant reduction in water solubility and swellability. Furthermore, the CMP/CNW/CLNS films exhibited remarkable improvement in antioxidant properties. When used for packaging of peeled fresh garlic cloves, the CMP/CNW/CLNS1 film pouch, not the plain CMP or CMP/CNW film pouches, inhibited weight loss, oxidative browning, and the emergence of black mold on the packaged cloves. The developed CMP/CNW/CLNS1 film demonstrated enhanced capacity to safeguard the quality of packaged food and improved shelf life. Therefore, the present study suggests that incorporation of CNW/CLNS into carboxymethyl chitosan/PVA films is a suitable and facile strategy for the fabrication of films with improved mechanical, physico-chemical and functional properties with great potential for application as a sustainable active packaging material in the food industry.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand
| | - Chitchamai Ovatlarnporn
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
4
|
Hu J, Qi Q, Zhu Y, Wen C, Olatunji OJ, Jayeoye TJ, Eze FN. Unveiling the anticancer, antimicrobial, antioxidative properties, and UPLC-ESI-QTOF-MS/ GC–MS metabolite profile of the lipophilic extract of siam weed (Chromolaena odorata). ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|