1
|
Gagour J, Hallouch O, Asbbane A, Bijla L, Laknifli A, Lee LH, Zengin G, Bouyahya A, Sakar EH, Gharby S. A Review of Recent Progresses on Olive Oil Chemical Profiling, Extraction Technology, Shelf-life, and Quality Control. Chem Biodivers 2024; 21:e202301697. [PMID: 38345352 DOI: 10.1002/cbdv.202301697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Olive oil (OO) is widely recognized as a main component in the Mediterranean diet owing to its unique chemical composition and associated health-promoting properties. This review aimed at providing readers with recent results on OO physicochemical profiling, extraction technology, and quality parameters specified by regulations to ensure authentic products for consumers. Recent research progress on OO adulteration were outlined through a bibliometric analysis mapping using Vosviewer software. As revealed by bibliometric analysis, richness in terms of fatty acids, pigments, polar phenolic compounds, tocopherols, squalene, sterols, and triterpenic compounds justify OO health-promoting properties and increasing demand on its global consumption. OO storage is a critical post-processing operation that must be optimized to avoid oxidation. Owing to its great commercial value on markets, OO is a target to adulteration with other vegetable oils. In this context, different chemometric tools were developed to deal with this problem. To conclude, increasing demand and consumption of OO on the global market is justified by its unique composition. Challenges such as oxidation and adulteration stand out as the main issues affecting the OO market.
Collapse
Affiliation(s)
- Jamila Gagour
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Otmane Hallouch
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Abderrahim Asbbane
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Laila Bijla
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Abdellatif Laknifli
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Learn-Han Lee
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, 315100>, China
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 >, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10090>, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology, and Health, FS, Abdelmalek Essaadi University, 93002, Tetouan, Morocco
| | - Said Gharby
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| |
Collapse
|
2
|
Filardo S, Roberto M, Di Risola D, Mosca L, Di Pietro M, Sessa R. Olea europaea L-derived secoiridoids: Beneficial health effects and potential therapeutic approaches. Pharmacol Ther 2024; 254:108595. [PMID: 38301769 DOI: 10.1016/j.pharmthera.2024.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Mattioli Roberto
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Daniel Di Risola
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
3
|
Serrano-García I, Olmo-García L, Monago-Maraña O, de Alba IMC, León L, de la Rosa R, Serrano A, Gómez-Caravaca AM, Carrasco-Pancorbo A. Characterization of the Metabolic Profile of Olive Tissues (Roots, Stems and Leaves): Relationship with Cultivars' Resistance/Susceptibility to the Soil Fungus Verticillium dahliae. Antioxidants (Basel) 2023; 12:2120. [PMID: 38136239 PMCID: PMC10741231 DOI: 10.3390/antiox12122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Verticillium wilt of olive (VWO) is one of the most widespread and devastating olive diseases in the world. Harnessing host resistance to the causative agent is considered one of the most important measures within an integrated control strategy of the disease. Aiming to understand the mechanisms underlying olive resistance to VWO, the metabolic profiles of olive leaves, stems and roots from 10 different cultivars with varying levels of susceptibility to this disease were investigated by liquid chromatography coupled to mass spectrometry (LC-MS). The distribution of 56 metabolites among the three olive tissues was quantitatively assessed and the possible relationship between the tissues' metabolic profiles and resistance to VWO was evaluated by applying unsupervised and supervised multivariate analysis. Principal component analysis (PCA) was used to explore the data, and separate clustering of highly resistant and extremely susceptible cultivars was observed. Moreover, partial least squares discriminant analysis (PLS-DA) models were built to differentiate samples of highly resistant, intermediate susceptible/resistant, and extremely susceptible cultivars. Root models showed the lowest classification capability, but metabolites from leaf and stem were able to satisfactorily discriminate samples according to the level of susceptibility. Some typical compositional patterns of highly resistant and extremely susceptible cultivars were described, and some potential resistance/susceptibility metabolic markers were pointed out.
Collapse
Affiliation(s)
- Irene Serrano-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Olga Monago-Maraña
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Avda. Esparta s/n, Crta. de Las Rozas-Madrid, E-28232 Madrid, Spain;
| | - Iván Muñoz Cabello de Alba
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Lorenzo León
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Ave. Menéndez Pidal s/n, E-14004 Córdoba, Spain; (L.L.); or (R.d.l.R.)
| | - Raúl de la Rosa
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Ave. Menéndez Pidal s/n, E-14004 Córdoba, Spain; (L.L.); or (R.d.l.R.)
| | - Alicia Serrano
- Department of Experimental Biology, The University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaén, Spain;
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| |
Collapse
|