1
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Macromolecules-based encapsulation of pesticides with carriers: A promising approach for safe and effective delivery. Int J Biol Macromol 2024; 269:132079. [PMID: 38705338 DOI: 10.1016/j.ijbiomac.2024.132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The global issue of pollution caused by the misuse and indiscriminate application of pesticides has reached critical levels. In this vein, encapsulating pesticides with carriers offers a promising approach that impacts key parameters such as pesticide release kinetics, stability, and biocompatibility, enhancing the safe and effective delivery of agrochemicals. Encapsulated pesticides hold the potential to reduce off-target effects, decrease environmental contamination, and improve overall crop protection. This review highlights the potential benefits and challenges associated with the use of both organic and in-organic carriers in pesticide encapsulation, and the current state of research in this field. Overall, the encapsulation of pesticides with carriers presents a promising approach for the safe and effective delivery of these vital agricultural compounds. By harnessing the advantages of encapsulation, this technique offers a potential solution to mitigate the adverse effects of conventional pesticides and contribute towards sustainable and environmentally conscious farming practices. Further research and development in this field is necessary to optimize the encapsulation process, carrier properties and advance towards sustainable and environmentally friendly pesticide delivery systems.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
2
|
Ding X, Gao F, Cui B, Du Q, Zeng Z, Zhao X, Sun C, Wang Y, Cui H. The key factors of solid nanodispersion for promoting the bioactivity of abamectin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105897. [PMID: 38685223 DOI: 10.1016/j.pestbp.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
3
|
Munir S, Azeem A, Sikandar Zaman M, Zia Ul Haq M. From field to table: Ensuring food safety by reducing pesticide residues in food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171382. [PMID: 38432369 DOI: 10.1016/j.scitotenv.2024.171382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The present review addresses the significance of lowering pesticide residue levels in food items because of their harmful impacts on human health, wildlife populations, and the environment. It draws attention to the possible health risks-acute and chronic poisoning, cancer, unfavorable effects on reproduction, and harm to the brain or immunological systems-that come with pesticide exposure. Numerous traditional and cutting-edge methods, such as washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, cold plasma, ultrasonic cleaning, ozone treatment, and enzymatic treatment, have been proposed to reduce pesticide residues in food products. It highlights the necessity of a paradigm change in crop protection and agri-food production on a global scale. It offers opportunities to guarantee food safety through the mitigation of pesticide residues in food. The review concludes that the first step in reducing worries about the negative effects of pesticides is to implement regulatory measures to regulate their use. In order to lower the exposure to dietary pesticides, the present review also emphasizes the significance of precision agricultural practices and integrated pest management techniques. The advanced approaches covered in this review present viable options along with traditional methods and possess the potential to lower pesticide residues in food items without sacrificing quality. It can be concluded from the present review that a paradigm shift towards sustainable agriculture and food production is essential to minimize pesticide residues in food, safeguarding human health, wildlife populations, and the environment. Furthermore, there is a need to refine the conventional methods of pesticide removal from food items along with the development of modern techniques.
Collapse
Affiliation(s)
- Salman Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Asad Azeem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; College of Agriculture, University of Layyah, Layyah 31200, Pakistan
| | - Muhammad Sikandar Zaman
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Zia Ul Haq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Kavya P, Priya S, Pradeesh K, Sandeep K, Saranya KP, Thomas VL, Shanthil M. Thin silica shell on Ag 3PO 4 nanoparticles augments stability and photocatalytic reusability. RSC Adv 2023; 13:30643-30648. [PMID: 37881758 PMCID: PMC10594404 DOI: 10.1039/d3ra05023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/16/2023] [Indexed: 10/27/2023] Open
Abstract
Semiconductor photocatalysts are promising cost-effective materials for degrading hazardous organic contaminants in water. Ag3PO4 is an efficient visible-light photocatalyst for the oxidation of water and dye degradation. The excited Ag3PO4 photocatalyst uses a hole to oxidise water or organic contaminants except the electron, which reduces Ag+ to Ag0. In the present study, the inherited disadvantage was overcome by a thin silica shell overcoating on Ag3PO4 nanoparticles. The silica-coated Ag3PO4 nanoparticles retain the photocatalytic activity even after five cycles of photodegradation, while the bare Ag3PO4 nanoparticles show a photocatalytic activity declined to half. The study demonstrates that the thin silica shell enhances the photostability, keeping the photocatalytic activity unaffected, even after several cycles of photodegradation of dyes. XPS analysis showed that the Ag0 formation on the surface of bare Ag3PO4 is greater than that on silica-coated Ag3PO4, which declines the photocatalytic activity of Ag3PO4 after five cycles of photodegradation. Electrochemical studies identified that the intermediates, such as OH˙ and O2-, formed during water oxidation play a crucial role in the photodegradation of dyes. This study can provide insights into the design of core-shell semiconductor nanostructures for reusable photocatalytic applications.
Collapse
Affiliation(s)
- Padmanabhan Kavya
- Department of Chemistry, Government Victoria College Palakkad 678001 Kerala India
| | | | - Kannan Pradeesh
- Department of Physics, Government Victoria College Palakkad 678001 Kerala India
| | - Kulangara Sandeep
- Department of Chemistry, Government Victoria College Palakkad 678001 Kerala India
| | - Karisseri P Saranya
- Department of Chemistry, Government Victoria College Palakkad 678001 Kerala India
| | | | - M Shanthil
- Department of Chemistry, Government Victoria College Palakkad 678001 Kerala India
| |
Collapse
|
5
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|