1
|
Claton LE, Pan H, Simanek EE. Impact of Solvent and Protonation State on Rotational Barriers in [s]-Triazines. J Org Chem 2024; 89:5480-5484. [PMID: 38591934 DOI: 10.1021/acs.joc.3c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Amine-substituted [s]-triazines display hindered rotation around the triazine-N bond. While this barrier, ΔG‡, has been measured to be between 15.1 and 17.7 kcal/mol for neutral triazines, the impacts that solvent and protonation state have not been addressed. Using a dimethylamine substituent as a reporter, ΔG‡ was measured to be 17.5-19.3 kcal/mol upon protonation across a range of solvents (D2O, DMSO-d6, MeCN-d3, MeOD-d4, tetrahydrofuran-d8, trifluoroethanol-d3). Furthermore, ΔG‡ increases as the solvent dielectric decreases (p < 0.01). This trend is consistent with the role that solvent plays in stabilizing the increased charge density on the triazine ring resulting from a loss of conjugation with the dimethylamine substituent. Across these solvents, ΔG‡ for the neutral molecule is smaller by ∼2-3 kcal/mol, ranging from 15.3-16.1 kcal/mol. In pyridine, ΔG‡ does not correlate with the solvent dielectric for the "protonated" model. The lower barrier is attributed to competitive protonation: the pKa of the protonated triazine (∼6) is similar to that of protonated pyridine-d5 (5.8). As additional acid is added, ΔG‡ increases. Adding additional acid to the protonated model in D2O or DMSO-d6 does not significantly affect ΔG‡.
Collapse
Affiliation(s)
- Liam E Claton
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| | - Hongjun Pan
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| |
Collapse
|
2
|
Meller A, Kelly D, Smith LG, Bowman GR. Toward physics-based precision medicine: Exploiting protein dynamics to design new therapeutics and interpret variants. Protein Sci 2024; 33:e4902. [PMID: 38358129 PMCID: PMC10868452 DOI: 10.1002/pro.4902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)-approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics-based precision medicine, a scalable framework that promises to improve our understanding of sequence-function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Medical Scientist Training ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Devin Kelly
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis G. Smith
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Menke AJ, Jacobus ZP, Claton LE, Annunziata O, Capelli R, Pavan GM, Simanek EE. Proton Affinity and Conformational Integrity of a 24-Atom Triazine Macrocycle across Physiologically Relevant pH. J Org Chem 2024; 89:2467-2473. [PMID: 38299798 PMCID: PMC11512517 DOI: 10.1021/acs.joc.3c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
For 24-atom triazine macrocycles, protonation of the heterocycle leads to a rigid, folded structure presenting a network of hydrogen bonds. These molecules derive from dynamic covalent chemistry wherein triazine monomers bearing a protected hydrazine group and acetal tethered by the amino acid dimerize quantitatively in an acidic solution. Here, lysine is used, and the product is a tetracation. The primary amines of the lysine side chains do not interfere with quantitative yields of the desired bis(hydrazone) at concentrations of 5-125 mg/mL. Mathematical modeling of data derived from titration experiments of the macrocycle reveals that the pKa values of the protonated triazines are 5.6 and 6.7. Changes in chemical shifts of resonances in the 1H NMR spectra corroborate these values and further support assignment of the protonation sites. The pKa values of the lysine side chains are consistent with expectation. Upon deprotonation, the macrocycle enjoys greater conformational freedom as evident from the broadening of resonances in the 1H and 13C NMR spectra indicative of dynamic motion on the NMR time scale and the appearance of additional conformations at room temperature. While well-tempered metadynamics suggests only a modest difference in accessible conformational footprints of the protonated and deprotonated macrocycles, the shift in conformation(s) supports the stabilizing role that the protons adopt in the hydrogen-bonded network.
Collapse
Affiliation(s)
- Alexander J Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Zachary P Jacobus
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Liam E Claton
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Onofrio Annunziata
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Riccardo Capelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Lugano-Viganello 6962, Switzerland
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
4
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Kompella SVK, Balasubramanian S. Supramolecular Polymerization of a Pyrene-Substituted Diamide and Its Ensemble of Kinetically Trapped Configurations. Angew Chem Int Ed Engl 2023; 62:e202310727. [PMID: 37725396 DOI: 10.1002/anie.202310727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The prevalence of kinetically accessible states in supramolecular polymerization pathways has been exploited to control the growth of the polymer and thereby to obtain niche morphologies. Yet, these pathways themselves are not easily amenable for experimental delineation but could potentially be understood through molecular dynamics (MD) simulations. Herein, we report an extensive investigation of the self-assembly of pyrene-substituted diamide (PDA) monomers in solution, conducted using atomistic MD simulations and advanced sampling methods. We characterize such kinetic and thermodynamic states as well as the transition pathways and free energy barriers between them. PDA forms a dimeric segment with the N- to C-termini vectors of the diamide moieties arranged either in parallel or anti-parallel fashion. This characteristic, combined with the molecule's torsional flexibility and pyrene-solvent interactions, presents an ensemble of molecular configurations contributing to the kinetic state in the polymerization pathway. While this ensemble primarily comprises short oligomers containing a mix of anti-parallel and parallel dimeric segments, the thermodynamic state of the assembly is a right-handed polymer featuring parallel ones only. Our work thus offers an approach by which the landscape of any specific supramolecular polymerization can be deconstructed.
Collapse
Affiliation(s)
- Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
6
|
Patterson-Gardner C, Pavelich GM, Cannon AT, Menke AJ, Simanek EE. Adaptation of Empirical Methods to Predict the LogD of Triazine Macrocycles. ACS Med Chem Lett 2023; 14:1378-1382. [PMID: 37849549 PMCID: PMC10577694 DOI: 10.1021/acsmedchemlett.3c00290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Octanol/water partition coefficients guide drug design, but algorithms do not always accurately predict these values. For cationic triazine macrocycles that adopt a conserved folded shape in solution, common algorithms fall short. Here, the logD values for 12 macrocycles differing in amino acid choice were predicted and then measured experimentally. On average, AlogP, XlogP, and ChemAxon predictions deviate by 0.9, 2.8, and 3.9 log units, with XlogP overestimating lipophilicity and AlogP and ChemAxon underestimating lipophilicity. Importantly, however, a linear relationship (R2 > 0.98) exists between the values predicted by AlogP and the experimentally determined logD values, thus enabling more accurate predictions.
Collapse
Affiliation(s)
- Casey
J. Patterson-Gardner
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Gretchen M. Pavelich
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - April T. Cannon
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Alexander J. Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Eric E. Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
7
|
Menke AJ, Mellberg JM, Pan H, Reibenspies JH, Janesko BG, Simanek EE. Controlling Swing Rates in Macrocyclic Molecular Mortise Hinges. Chemistry 2023; 29:e202300987. [PMID: 37229593 PMCID: PMC10524934 DOI: 10.1002/chem.202300987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Hinge motion is observed in macrocyclic, mortise-type molecular hinges using variable temperature NMR spectroscopy. The data is consistent with dynamic hinging from a folded-to-extended-to-folded enantiomeric state. Crystallographic and solution structures of the folded states are reported. Chemical shift predictions derived from crystallographic data corroborate fully revolute hinge motion. The rate of hinging is affected by steric congestion at the hinge axis. A macrocycle containing glycine, 1, hinges faster than one comprising aminoisobutyric acid, 2. The free energies of activation, ΔG≠ , for 1 and 2 were determined to be 13.3±0.3 kcal/mol and 16.3±0.3 kcal/mol, respectively. This barrier is largely independent of solvent across those surveyed (CD3 OD, CD3 CN, DMSO-d6 , pyridine-d5 , D2 O). Experiment and computation predict energy barriers that are consistent with disruption of an intramolecular network of hydrogen bonds. DFT calculations reveal a pathway for hinge motion.
Collapse
Affiliation(s)
- Alexander J Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Joseph M Mellberg
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Hongjun Pan
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | | | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| |
Collapse
|
8
|
Menke AJ, Gloor CJ, Claton LE, Mekhail MA, Pan H, Stewart MD, Green KN, Reibenspies JH, Pavan GM, Capelli R, Simanek EE. A Model for the Rapid Assessment of Solution Structures for 24-Atom Macrocycles: The Impact of β-Branched Amino Acids on Conformation. J Org Chem 2023; 88:2692-2702. [PMID: 36780253 PMCID: PMC10903118 DOI: 10.1021/acs.joc.2c01984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Experiment and computation are used to develop a model to rapidly predict solution structures of macrocycles sharing the same Murcko framework. These 24-atom triazine macrocycles result from the quantitative dimerization of identical monomers presenting a hydrazine group and an acetal tethered to an amino acid linker. Monomers comprising glycine and the β-branched amino acids threonine, valine, and isoleucine yield macrocycles G-G, T-T, V-V, and I-I, respectively. Elements common to all members of the framework include the efficiency of macrocyclization (quantitative), the solution- and solid-state structures (folded), the site of protonation (opposite the auxiliary dimethylamine group), the geometry of the hydrazone (E), the C2 symmetry of the subunits (conserved), and the rotamer state adopted. In aggregate, the data reveal metrics predictive of the three-dimensional solution structure that derive from the fingerprint region of the 1D 1H spectrum and a network of rOes from a single resonance. The metrics also afford delineation of more nuanced structural features that allow subpopulations to be identified among the members of the framework. Well-tempered metadynamics provides free energy surfaces and population distributions of these macrocycles. The areas of the free energy surface decrease with increasing steric bulk (G-G > V-V ∼ T-T > I-I). In addition, the surfaces are increasingly isoenergetic with decreasing steric bulk (G-G > V-V ∼ T-T > I-I).
Collapse
Affiliation(s)
- Alexander J Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Camryn J Gloor
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Liam E Claton
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Hongjun Pan
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Mikaela D Stewart
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Viganello, 6962 Lugano, Switzerland
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Riccardo Capelli
- Department of Biosciences, Université degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
9
|
Menke AJ, Henderson NC, Kouretas LC, Estenson AN, Janesko BG, Simanek EE. Computational and Experimental Evidence for Templated Macrocyclization: The Role of a Hydrogen Bond Network in the Quantitative Dimerization of 24-Atom Macrocycles. Molecules 2023; 28:1144. [PMID: 36770811 PMCID: PMC9921993 DOI: 10.3390/molecules28031144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
In the absence of preorganization, macrocyclization reactions are often plagued by oligomeric and polymeric side products. Here, a network of hydrogen bonds was identified as the basis for quantitative yields of macrocycles derived from the dimerization of monomers. Oligomers and polymers were not observed. Macrocyclization, the result of the formation of two hydrazones, was hypothesized to proceed in two steps. After condensation to yield the monohydrazone, a network of hydrogen bonds formed to preorganize the terminal acetal and hydrazine groups for cyclization. Experimental evidence for preorganization derived from macrocycles and acyclic models. Solution NMR spectroscopy and single-crystal X-ray diffraction revealed that the macrocycles isolated from the cyclization reaction were protonated twice. These protons contributed to an intramolecular network of hydrogen bonds that engaged distant carbonyl groups to realize a long-range order. DFT calculations showed that this network of hydrogen bonds contributed 8.7 kcal/mol to stability. Acyclic models recapitulated this network in solution. Condensation of an acetal and a triazinyl hydrazine, which adopted a number of conformational isomers, yielded a hydrazone that adopted a favored rotamer conformation in solution. The critical hydrogen-bonded proton was also evident. DFT calculations of acyclic models showed that the rotamers were isoenergetic when deprotonated. Upon protonation, however, energies diverged with one low-energy rotamer adopting the conformation observed in the macrocycle. This conformation anchored the network of hydrogen bonds of the intermediate. Computation revealed that the hydrogen-bonded network in the acyclic intermediate contributed up to 14 kcal/mol of stability and preorganized the acetal and hydrazine for cyclization.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin G. Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | - Eric E. Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|