1
|
Watson AER, Boyle PD, Ragogna PJ, Gilroy JB. Ligand protonation leads to highly fluorescent boronium cations. Chem Sci 2025; 16:2258-2264. [PMID: 39776660 PMCID: PMC11701515 DOI: 10.1039/d4sc06392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Fluorophores that respond to external stimuli, such as changes in pH, have utility in bio-imaging and sensing applications. Almost all pH-responsive fluorophores rely on complex syntheses and the use of pH-responsive functional groups that are peripheral to the fluorophore framework. In this work, pH-responsive boron-containing heterocycles based on tridentate acyl pyridylhydrazone ligands were prepared. These non-emissive heterocycles were synthesized in three steps from inexpensive, commercially available reagents without the use of chromatography or air-sensitive reagents. Treatment with acid resulted in protonation of the boron-bound methylamine donor and efficient blue photoluminescence. Experimental and computational analysis revealed that protonation changed the geometric structure of the heterocycles and prevented photoluminescence quenching associated with photoinduced electron transfer. This work demonstrates a new approach for the design of fluorophores with potential applications in biological imaging.
Collapse
Affiliation(s)
- Alexander E R Watson
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Paul J Ragogna
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
- Surface Science Western London Ontario N6G 0J3 Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
2
|
Milkovich SK, Buguis FL, Boyle PD, Gilroy JB. Pnictogen-Rich Heterocycles Derived from a Phosphadiazonium Cation. Chemistry 2024; 30:e202400569. [PMID: 38393539 DOI: 10.1002/chem.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Heterocycles that pair main group elements and nitrogen are extremely important within the π-conjugated heterocycles research community. Compared to the vast number of boron-nitrogen heterocycles, those that include phosphorus are less common. Furthermore, the use of phosphorus-nitrogen triple bonds of any type to prepare such compounds is unprecedented. Here, we pair pyridyl hydrazonide ligands with phosphadiazonium cations and demonstrate that the chelated Mes*NP group is directly implicated in the photophysical and redox properties observed for the resulting heterocycles. In doing so, we introduce a novel building block for the production of phosphorus-containing heterocycles that could find use in small molecule activation and catalysis or as the functional component of emerging organic electronics.
Collapse
Affiliation(s)
- Shaun K Milkovich
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Francis L Buguis
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| |
Collapse
|
3
|
Gayathri P, Ravi S, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Synthesis of ESIPT fluorophores with two intramolecular H-bonding functionalities: Reversible mechanofluorochromism and conformation controlled solid state fluorescence efficiency. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Ramalingam A, Kuppusamy M, Sambandam S, Medimagh M, Oyeneyin OE, Shanmugasundaram A, Issaoui N, Ojo ND. Synthesis, spectroscopic, topological, hirshfeld surface analysis, and anti-covid-19 molecular docking investigation of isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Heliyon 2022; 8:e10831. [PMID: 36211997 PMCID: PMC9526874 DOI: 10.1016/j.heliyon.2022.e10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (IDPC) was synthesized and characterized via spectroscopic (FT-IR and NMR) techniques. Hirshfeld surface and topological analyses were conducted to study structural and molecular properties. The energy gap (Eg), frontier orbital energies (EHOMO, ELUMO) and reactivity parameters (like chemical hardness and global hardness) were calculated using density functional theory with B3LYP/6-311++G (d,p) level of theory. Molecular docking of IDPC at the active sites of SARS-COVID receptors was investigated. IDPC molecule crystallized in the centrosymmetric triclinic ( P 1 ¯ ) space group. The topological and Hirshfeld surface analysis revealed that covalent, non-covalent and intermolecular H-bonding interactions, and electron delocalization exist in the molecular framework. Higher binding score (-6.966 kcal/mol) of IDPC at the active site of SARS-COVID main protease compared to other proteases suggests that IDPC has the potential of blocking polyprotein maturation. H-bonding and π-cationic and interactions of the phenyl ring and carbonyl oxygen of the ligand indicate the effective inhibiting potential of the compound against the virus.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, 117583, Singapore
| | - Murugavel Kuppusamy
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, Tamil Nadu, India
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mouna Medimagh
- University of Monastir, Faculty of Sciences, Laboratory of Quantum and Statistical Physics (LR18ES18), Monastir, 5079, Tunisia
| | - Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | | | - Noureddine Issaoui
- University of Monastir, Faculty of Sciences, Laboratory of Quantum and Statistical Physics (LR18ES18), Monastir, 5079, Tunisia
| | | |
Collapse
|