1
|
da V Pereira L, Rizzi T, Federizzi M, Donato KZ, Donato RK, Fuentefria AM, Reginatto P. Antifungal Associations with a Polyelectrolyte Promote Significant Reduction of Minimum Inhibitory Concentrations against Opportunistic Candida spp. Strains. Curr Microbiol 2024; 81:441. [PMID: 39495372 DOI: 10.1007/s00284-024-03960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The current global scenario presents us with a growing increase in infections caused by fungi, referred to by specialists in the field as a "silent epidemic", aggravated by the limited pharmacological arsenal and increasing resistance to this therapy. For this reason, drug repositioning and therapeutic compound combinations are promising strategies to mitigate this serious problem. In this context, this study investigates the antifungal activity of the non-toxic, low-cost and widely available cationic polyelectrolyte Poly(diallyldimethylammonium chloride) (PDDA), in combination with different antifungal drugs: systemic (amphotericin B, AMB), topical (clioquinol, CLIO) and oral (nitroxoline, NTX). For each combination, different drug:PDDA ratios were tested and, through the broth microdilution technique, the minimum inhibitory concentration (MIC) of these drugs in the different ratios against clinically important Candida species strains was determined. Overall, PDDA combinations with the studied drugs demonstrated a significant increase in drug activity against most strains, reaching MIC reductions of up to 512 fold for the fluconazole resistant Candida krusei (Pichia kudriavzevii). In particular, the AMB-PDDA combination 1:99 was highly effective against AMB-resistant strains, demonstrating the excellent profile of PDDA as an adjuvant/association in novel antifungal formulations with outdated conventional drugs.
Collapse
Affiliation(s)
- Lavínia da V Pereira
- Laboratório de Pesquisa Em Micologia Aplicada (LPMA), Universidade Federal Do Rio Grande Do Sul, Rua São Luís 152, Porto Alegre, 90470-440, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Tiago Rizzi
- Laboratório de Pesquisa Em Micologia Aplicada (LPMA), Universidade Federal Do Rio Grande Do Sul, Rua São Luís 152, Porto Alegre, 90470-440, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Micaela Federizzi
- Laboratório de Pesquisa Em Micologia Aplicada (LPMA), Universidade Federal Do Rio Grande Do Sul, Rua São Luís 152, Porto Alegre, 90470-440, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Katarzyna Z Donato
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Ricardo K Donato
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Řež, Czech Republic
| | - Alexandre M Fuentefria
- Laboratório de Pesquisa Em Micologia Aplicada (LPMA), Universidade Federal Do Rio Grande Do Sul, Rua São Luís 152, Porto Alegre, 90470-440, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Paula Reginatto
- Laboratório de Pesquisa Em Micologia Aplicada (LPMA), Universidade Federal Do Rio Grande Do Sul, Rua São Luís 152, Porto Alegre, 90470-440, Brazil.
| |
Collapse
|
2
|
Ji ZH, Xie WY, Zhao PS, Wu HY, Ren WZ, Hu JP, Gao W, Yuan B. Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients 2023; 15:5055. [PMID: 38140314 PMCID: PMC10746067 DOI: 10.3390/nu15245055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| |
Collapse
|
3
|
Tymecka M, Hac-Wydro K, Obloza M, Bonarek P, Kaminski K. The Use of a Barley-Based Well to Define Cationic Betaglucan to Study Mammalian Cell Toxicity Associated with Interactions with Biological Structures. Pharmaceutics 2023; 15:2009. [PMID: 37514195 PMCID: PMC10385077 DOI: 10.3390/pharmaceutics15072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Among potential macromolecule-based pharmaceuticals, polycations seem particularly interesting due to their proven antimicrobial properties and use as vectors in gene therapy. This makes an understanding of the mechanisms of these molecules' interaction with living structures important, so the goal of this paper was to propose and carry out experiments that will allow us to characterize these phenomena. Of particular importance is the question of toxicity of such structures to mammalian cells and, in the work presented here, two lines, normal fibroblasts 3T3-L1 and A549 lung cancer, were used to determine this. In this work, three well-defined cationic derivatives of barley-derived betaglucans obtained in a reaction with glycidyltrimethylammonium chloride (BBGGTMAC) with different degrees of cationization (50, 70, and 100% per one glucose unit) and electrostatic charge were studied. The studies address interactions of these polymers with proteins (bovine serum proteins and BSA), nucleic acids (DNA), glycosaminoglycans (heparin), and biological membranes. The results described in this study make it possible to indicate that toxicity is most strongly influenced by interactions with biological membranes and is closely related to the electrostatic charge of the macromolecule. The presentation of this observation was the goal of this publication. This paper also shows, using fluorescently labeled variants of polymers, the penetration and impact on cell structure (only for the polymer with the highest substitution binding to cell membranes is observed) by using confocal and SEM (for the polymer with the highest degree of substitution, and the appearance of additional structures on the surface of the cell membrane is observed). The labeled polymers are also tools used together with dynamic light scattering and calorimetric titration to study their interaction with other biopolymers. As for the interactions with biological membranes, lipid Langmuir monolayers as model membrane systems were used.
Collapse
Affiliation(s)
- Malgorzata Tymecka
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Katarzyna Hac-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Obloza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|