1
|
Abbas F, Bousbih R, Ayub AR, Zahid S, Aljohani M, Amin MA, Waqas M, Soliman MS, Khera RA, Jahan N. A Theoretical Investigation for Exploring the Potential Performance of Non-Fullerene Organic Solar Cells Through Side-Chain Engineering Having Diphenylamino Groups to Enhance Photovoltaic Properties. J Fluoresc 2024:10.1007/s10895-024-03805-7. [PMID: 38951306 DOI: 10.1007/s10895-024-03805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
The development of ecofriendly fabrication phenomenon is essential requirement for commercialization of non-fullerene acceptors. Recently, end-capped modeling is employed for computational design of five non-fullerene acceptors to elevate various photovoltaic properties. All new molecules are formulated by altering the peripheral acceptors of CH3-2F and DFT methodology is employed to explore the opto-electronic, morphological and charge transfer analysis. From the computational investigation, all reported molecules manifested red shifted absorption with remarkable reduced band gap. Among investigated molecules, FA1-FA3 evinced effectively decreased value of band gaps and designed molecules have low excitation energy justifying proficient charge transference. The lower values of binding energy of FA1 and FA2 suggest their facile exciton dissociation leading to improved charge mobility. By blending with J61 donor, FA4 have sufficiently enhanced value of VOC (1.72 eV) and fill factor (0.9228). Energy loss of the model (R) is 0.57 eV and statistical calculation demonstrate that all our modified molecules except FA3 has profoundly reduced energy loss compelling in its pivotal utilization. From accessible supportive outcomes of recent investigation, it is recommended that our modified chromophore exhibit remarkable noteworthy applications in solar cells for forthcoming innovations.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, 21944, Taif, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Nazish Jahan
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Ijaz R, Waqas M, Mahal A, Essid M, Zghab I, Khera RA, Alotaibi HF, Al-Haideri M, Alshomrany AS, Zahid S, Alatawi NS, Aloui Z. Tuning the optoelectronic properties of selenophene-diketopyrrolopyrrole-based non-fullerene acceptor to obtain efficient organic solar cells through end-capped modification. J Mol Graph Model 2024; 129:108745. [PMID: 38442441 DOI: 10.1016/j.jmgm.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
With the goal of developing a high-performance organic solar cell, nine molecules of A2-D-A1-D-A2 type are originated in the current investigation. The optoelectronic properties of all the proposed compounds are examined by employing the DFT approach and the B3LYP functional with a 6-31G (d, p) basis set. By substituting the terminal moieties of reference molecule with newly proposed acceptor groups, several optoelectronic and photovoltaic characteristics of OSCs have been studied, which are improved to a significant level when compared with reference molecule, i.e., absorption properties, excitation energy, exciton binding energy, band gap, oscillator strength, electrostatic potential, light-harvesting efficiency, transition density matrix, open-circuit voltage, fill factor, density of states and interaction coefficient. All the newly developed molecules (P1-P9) have improved λmax, small band gap, high oscillator strengths, and low excitation energies compared to the reference molecule. Among all the studied compounds, P9 possesses the least binding energy (0.24 eV), P8 has high interaction coefficient (0.70842), P3 has improved electron mobility due to the least electron reorganization energy (λe = 0.009182 eV), and P5 illustrates high light-harvesting efficiency (0.7180). P8 and P9 displayed better Voc results (1.32 eV and 1.33 eV, respectively) and FF (0.9049 and 0.9055, respectively). Likewise, the phenomenon of charge transfer in the PTB7-Th/P1 blend seems to be a marvelous attempt to introduce them in organic photovoltaics. Consequently, the outcomes of these parameters demonstrate that adding new acceptors to reference molecule is substantial for the breakthrough development of organic solar cells (OSCs).
Collapse
Affiliation(s)
- Rimsha Ijaz
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Maysoon Al-Haideri
- Pharmacy Department, School of Medicine, University of Kurdistan Hewlêr, Kurdistan Region, Iraq
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia.
| |
Collapse
|
3
|
Ishtiaq M, Shaban M, Waqas M, Akram SJ, Mahal A, Alkhouri A, Alshomrany AS, Alatawi NS, Alotaibi HF, Shehzad RA, Assem EE, Zghab I, Khera RA. Structural modification of A-C-A configured X-PCIC acceptor molecule for efficient photovoltaic properties with low energy loss in organic solar cells. J Mol Graph Model 2024; 129:108722. [PMID: 38377792 DOI: 10.1016/j.jmgm.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Modification of terminal acceptors of non-fullerene organic solar cell molecule with different terminal acceptors can help in screening of molecules to develop organic photovoltaic cells with improved performance. Thus, in this work, seven new molecules with an unfused core have been designed and thoroughly investigated. DFT/TD-DFT simulations were performed on studied molecules to explore the ground and excited state characteristics. UV-Visible analysis revealed the red shift in the absorption spectrum (reaching 781 nm) owing to their smaller energy gap up to 1.94 eV. Furthermore, transition density matrix analysis demonstrated that peripheral acceptors extract the electron density from the core effectively. The effectiveness of our investigated molecules as materials for high-performing organic photovoltaic cells has been shown by an examination of their electron and hole mobilities for fast charge transfer. When combined with PTB7-Th, all molecules displayed high open circuit voltage. XP5 molecule exhibited highest open circuit voltage (1.70 eV) and lowest energy loss of 0.30 eV. All designed molecules exhibit the improved aforementioned parameters, which shows that these molecules can be used to develop competent solar devices in future.
Collapse
Affiliation(s)
- Mariam Ishtiaq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Anas Alkhouri
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca, 24381, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh, 11671, Saudi Arabia
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - E E Assem
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
4
|
Zahoor A, Sadiq S, Khera RA, Essid M, Aloui Z, Alatawi NS, Ibrahim MAA, Hasanin THA, Waqas M. A DFT study for improving the photovoltaic performance of organic solar cells by designing symmetric non-fullerene acceptors by quantum chemical modification on pre-existed LC81 molecule. J Mol Graph Model 2023; 125:108613. [PMID: 37659133 DOI: 10.1016/j.jmgm.2023.108613] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Minimizing the energy loss and improving the open circuit voltage of organic solar cells is still a primary concern for scientists working in this field. With the aim to enhance the photovoltaic performance of organic solar cells by minimizing energy loss and improving open circuit voltage, seven new acceptor molecules (LC1-LC7) are presented in this work. These molecules are designed by modifying the terminal acceptors of pre-existed "LC81" molecule based on an indacinodithiophene (IDT) fused core. The end-group modification approach is very fruitful in ameliorating the efficacy and optoelectric behavior of OSCs. The newly developed molecules presented remarkable improvements in performance-related parameters and optoelectronic properties. Among all designed molecules, LC7 exhibited the highest absorption maxima (λmax = 869 nm) with the lowest band-gap (1.79 eV), lowest excitation energy (Ex = 1.42 eV), lowest binding energy, and highest excited state lifetime (0.41 ns). The newly designed molecules LC2, LC3, and LC4 exhibited remarkably improved Voc that was 1.84 eV, 1.82 eV, and 1.79 eV accordingly, compared to the LC81 molecule with Voc of 1.74 eV LC2 molecule showed significant improvement in fill factor compared to the previously presented LC81 molecule. LC2, LC6, and LC7 showed a remarkable reduction in energy loss by showing Eloss values of 0.26 eV, 0.18 eV, and 0.25 eV than LC81 molecule (0.37 eV). These findings validate the supremacy of these developed molecules (especially LC2) as potential components of future OSCs.
Collapse
Affiliation(s)
- Amna Zahoor
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sonia Sadiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Tamer H A Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|