1
|
Meena PL, Surela AK, Chhachhia LK, Meena J, Meena R. Investigation of the photocatalytic potential of C/N-co-doped ZnO nanorods produced via a mechano-thermal process. NANOSCALE ADVANCES 2025:d4na00890a. [PMID: 39839223 PMCID: PMC11744485 DOI: 10.1039/d4na00890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Doping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods via a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared via a precipitation approach. The FESEM findings confirmed the formation of rod-shaped nanostructures of co-doped ZnO nanoparticles, and EDX and XPS results revealed the successful doping of C and N atoms in ZnO lattices. The XRD and XPS results substantiated that N-doping in the ZnO lattice followed substitutional and interstitial mechanisms, while C-doping followed a substitutional pathway. The co-doped ZnO nanorods exhibited highly enhanced degradation potential toward both MB (∼99%) and BCB (∼98%) dyes upon exposure to visible light for 60 min in a basic medium at pH = 10 owing to factors such as formation of new energy states within the band gap of ZnO, delayed recombination of photogenerated charge carriers, and formation of lattice defects in the ZnO lattice due to C and N doping. The MB and BCB dyes photodegraded at degradation rates of 637.23 × 10-4 and 775.25 × 10-4 min-1, respectively, and the photodegradation process showed good agreement with the pseudo-first-order kinetics in the presence of co-doped ZnO nanorods under visible light illumination. The ˙O2 - radicals were the key reactive species involved in the decay of MB and BCB dyes over co-doped ZnO, as confirmed via scavenger studies, and the C/N-co-doped ZnO nanorods retained approximately 90% and 91% efficiencies for BCB and MB dyes, respectively, after three successive cycles of reuse, which confirmed their good stability and reusability under visible light.
Collapse
Affiliation(s)
| | - Ajay Kumar Surela
- Department of Chemistry, University of Rajasthan Jaipur-302004 India
| | | | - Jugmohan Meena
- Department of Chemistry, University of Rajasthan Jaipur-302004 India
| | - Rohitash Meena
- Department of Chemistry, University of Rajasthan Jaipur-302004 India
| |
Collapse
|
2
|
Wang M, Lan S, Song M, Zhang R, Zhang W, Sun X, Liu G. Synthesis of Zinc Oxide-Doped Carbon Dots for Treatment of Triple-Negative Breast Cancer. Int J Nanomedicine 2024; 19:13949-13971. [PMID: 39742095 PMCID: PMC11687324 DOI: 10.2147/ijn.s494262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction The anti-cancer properties of zinc oxide-doped carbon dots (CDs/ZnO) in inhibiting triple-negative breast cancer (TNBC) progression merit more investigation. Methods With citric acid as the carbon source, urea applied as the nitrogen source, and zinc oxide (ZnO) used as a reactive dopant, CDs/ZnO were synthesized by microwave heating in the current study, followed by the characterization and biocompatibility assessments. Subsequently, the anti-cancer capabilities of CDs/ZnO against TNBC progression were evaluated by various biochemical and molecular techniques, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, metabolome, and transcriptome assays of MDA-MB-231 cells. Additionally, the in vivo anti-cancer potentials of CDs/ZnO against TNBC progression were analyzed using TNBC xenograft mouse models. Results The biocompatibility of CDs/ZnO was supported by the non-significant changes in the pathological and physiological parameters in the CDs/ZnO treated mice, alongside a non-cytotoxic effect of CDs/ZnO on the proliferation of normal cells. Notably, the CDs/ZnO treatments effectively decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells. Furthermore, the CDs/ZnO treatments induced cell cycle arrest, apoptosis, redox imbalance, metabolome disturbances, and transcriptomic alterations of MDA-MB-231 cells by regulating the MAPK signaling pathway. Additionally, the CDs/ZnO treatments markedly suppressed the in vivo tumor growth in the TNBC xenograft mouse models. Conclusion In this study, we synthesized CDs/ZnO via microwave heating, using citric acid as the carbon source, urea as the nitrogen source, and ZnO as a reactive dopant. We confirmed the biosafety and potent anti-cancer efficacy of CDs/ZnO in inhibiting TNBC progression by disrupting malignant cell behaviors through modulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengqi Wang
- College of Life Science and Oceanography, Weifang University, Weifang, Shandong, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Mingjun Song
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, Shandong, People’s Republic of China
| | - Rongrong Zhang
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
3
|
Kansaard T, Songpanit M, Noonuruk R, Wattanawikkam C, Mekprasart W, Boonyarattanakalin K, Jayasankar CK, Pecharapa W. Er-Doped BiVO 4/BiFeO 3 Nanocomposites Synthesized via Sonochemical Process and Their Piezo-Photocatalytic Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:954. [PMID: 38869579 PMCID: PMC11173839 DOI: 10.3390/nano14110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
In this work, Er-doped BiVO4/BiFeO3 composites are prepared using the sonochemical process with a difference of rare earth loading compositions. The crystallinity and chemical and morphological structure of as-synthesized samples were investigated via X-ray diffraction, Raman scattering, and electron microscopy, respectively. The diffuse reflectance technique was used to extract the optical property and calculate the optical band gap of the composite sample. The piezo-photocatalytic performance was evaluated according to the decomposition of a Rhodamine B organic compound. The decomposition of the organic compound was achieved under ultrasonic bath irradiation combined with light exposure. The Er-doped BiVO4/BiFeO3 composite heterojunction material exhibited significant enhancement of the piezo-photocatalytic activity under both ultrasonic and light irradiation due to the improvement in charge generation and separation. The result indicates that Er dopant strongly affects the phase transformation, change in morphology, and alternation in optical band gap of the BiVO4 matrix. The incorporation of BiFeO3 in the composite form with BiVO4 doped with 1%Er can improve the photocatalytic performance of BiVO4 via piezo-induced charge separation and charge recombination retardment.
Collapse
Affiliation(s)
- Thanaphon Kansaard
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.K.); (M.S.); (W.M.); (K.B.)
| | - Maneerat Songpanit
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.K.); (M.S.); (W.M.); (K.B.)
| | - Russameeruk Noonuruk
- Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong Luang 12110, Thailand; (R.N.); (C.W.)
| | - Chakkaphan Wattanawikkam
- Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong Luang 12110, Thailand; (R.N.); (C.W.)
| | - Wanichaya Mekprasart
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.K.); (M.S.); (W.M.); (K.B.)
| | - Kanokthip Boonyarattanakalin
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.K.); (M.S.); (W.M.); (K.B.)
| | | | - Wisanu Pecharapa
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.K.); (M.S.); (W.M.); (K.B.)
| |
Collapse
|
4
|
Zhang S, Tang X, Zang L, Zhao L. Carbon quantum dots(CQDs)-sensitized CdS/CuInS 2 heterojunction as a photoelectrochemical biosensing platform for highly sensitive detection of prostate-specific antigen. Talanta 2024; 272:125811. [PMID: 38387373 DOI: 10.1016/j.talanta.2024.125811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Sensitive and quantitative detection of prostate-specific antigen (PSA) has been determined to be indispensable for clinical diagnostics of prostate cancer, whereas such detection is quite challenging due to the extremely low concentration of biomarkers in human serum samples. In this study, a photoelectrochemical (PEC) sensor was effectively developed for the high-sensitivity analysis of prostate-specific antigen (PSA) using a signal amplification method utilizing sensitized carbon quantum dots (CQDs). In this experiment, cadmium sulfide quantum dots were employed as the substrate materials, and indium copper sulfide quantum dots were loaded on their surfaces. Moreover, the efficient matching of energy levels in these two materials contributed to the generation of photocurrents. The aforementioned heterojunction semiconductor QDs were thus combined with CQDs to produce CQDs on their surfaces. As a result of the presence of CQDs, the ability of heterojunction materials to absorb light was remarkably enhanced, increasing the photocurrent by over ten times. Consequently, in this study, CQDs were combined with PEC sensors, and the developed PEC biosensors exhibited excellent optical performance, sensitivity, repeatability, and stability. The results obtained from the analysis of actual samples were satisfactory and have promising application prospects.
Collapse
Affiliation(s)
- Shunhua Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Ximing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Linghe Zang
- School of Life Science and Bio-pharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
5
|
Tegenaw AB, Yimer AA, Beyene TT. Boosting the photocatalytic activity of ZnO-NPs through the incorporation of C-dot and preparation of nanocomposite materials. Heliyon 2023; 9:e20717. [PMID: 37842599 PMCID: PMC10570576 DOI: 10.1016/j.heliyon.2023.e20717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Due to their applications in cosmetology, medicine, antibacterial and other fields, zinc oxide nanoparticles (ZnO-NPs) are among the nanoscale materials experiencing exponential growth. In contrast, pure ZnO-NPs have been reported to have a very large energy bandgap, a large exaction binding energy, electron-hole recombination, no visible light absorption, and poor photocatalytic activities, which limit their potential uses. ZnO-NPs can be further extended through the incorporation of trace amounts of carbon materials to engulf these problems. We investigate the photocatalytic degradation of methylene blue (MB) dye with pure ZnO-NPs infused with a limited amount of carbon dot (C-dot) materials. Consequently, adding 10% C-dot to ZnO-NPs reduced their energy bandgap from 3.1 to 2.8 eV and significantly increased their photocatalytic activity. MB was almost completely degraded (98.4%) after 60 min when 50 mg of C-dot-incorporated ZnO-NPs were added. By comparison, the nanocomposite's photocatalytic activity exceeded that of pure ZnO-NPs by more than 50%. A surface charge and stability improvement are responsible for the extraordinary photocatalytic improvement. As far as we know, this is the best-ever photocatalytic improvement achieved by incorporating a trace amount of C-dot material into pure ZnO-NPs.
Collapse
Affiliation(s)
- Asegid Belete Tegenaw
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O.Box 378, Jimma, Ethiopia
| | - Ahmed Awol Yimer
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O.Box 378, Jimma, Ethiopia
| | - Tamene Tadesse Beyene
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O.Box 378, Jimma, Ethiopia
| |
Collapse
|
6
|
Narayanan KB, Bhaskar R, Seok YJ, Han SS. Photocatalytic Degradation, Anticancer, and Antibacterial Studies of Lysinibacillus sphaericus Biosynthesized Hybrid Metal/Semiconductor Nanocomposites. Microorganisms 2023; 11:1810. [PMID: 37512982 PMCID: PMC10385839 DOI: 10.3390/microorganisms11071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The biological synthesis of nanocomposites has become cost-effective and environmentally friendly and can achieve sustainability with high efficiency. Recently, the biological synthesis of semiconductor and metal-doped semiconductor nanocomposites with enhanced photocatalytic degradation efficiency, anticancer, and antibacterial properties has attracted considerable attention. To this end, for the first time, we biosynthesized zinc oxide (ZnO) and silver/ZnO nanocomposites (Ag/ZnO NCs) as semiconductor and metal-doped semiconductor nanocomposites, respectively, using the cell-free filtrate (CFF) of the bacterium Lysinibacillus sphaericus. The biosynthesized ZnO and Ag/ZnO NCs were characterized by various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The photocatalytic degradation potential of these semiconductor NPs and metal-semiconductor NCs was evaluated against thiazine dye, methylene blue (MB) degradation, under simulated solar irradiation. Ag/ZnO showed 90.4 ± 0.46% photocatalytic degradation of MB, compared to 38.18 ± 0.15% by ZnO in 120 min. The cytotoxicity of ZnO and Ag/ZnO on human cervical HeLa cancer cells was determined using an MTT assay. Both nanomaterials exhibited cytotoxicity in a concentration- and time-dependent manner on HeLa cells. The antibacterial activity was also determined against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus). Compared to ZnO, Ag/ZnO NCs showed higher antibacterial activity. Hence, the biosynthesis of semiconductor nanoparticles could be a promising strategy for developing hybrid metal/semiconductor nanomaterials for different biomedical and environmental applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Yong Joo Seok
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|