1
|
Nayab S, Jan K, Kim SH, Kim SH, Shams DF, Son Y, Yoon M, Lee H. Insight into the inhibitory potential of metal complexes supported by ( E)-2-morpholino- N-(thiophen-2-ylmethylene)ethanamine: synthesis, structural properties, biological evaluation and docking studies. Dalton Trans 2024; 53:11295-11309. [PMID: 38898716 DOI: 10.1039/d4dt00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 μM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.
Collapse
Affiliation(s)
- Saira Nayab
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir (U) 18050, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Seung-Hyeon Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sa-Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dilawar Farhan Shams
- Department of Environmental Chemistry, Abdul Wali Khan University Maradan, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Younghu Son
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Nayab S, Alam A, Ahmad N, Khan SW, Khan W, Shams DF, Shah MI, Ateeq M, Shah SK, Lee H. Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS OMEGA 2023; 8:17620-17633. [PMID: 37251197 PMCID: PMC10210233 DOI: 10.1021/acsomega.2c08266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Novel thiophene-derived Schiff base ligand DE, where DE is (E)-N1,N1-diethyl-N2-(thiophen-2-ylmethylene)ethane-1,2-diamine, and the corresponding M(II) complexes, [M(DE)X2] (M = Cu or Zn, X = Cl; M = Cd, X = Br), were prepared and structurally characterized. X-ray diffraction studies revealed that the geometry around the center of the M(II) complexes, [Zn(DE)Cl2] and [Cd(DE)Br2], could be best described as a distorted tetrahedral. In vitro antimicrobial screening of DE and its corresponding M(II) complexes, [M(DE)X2], was performed. The complexes were more potent and showed higher activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, fungi Candida albicans, and protozoa Leishmania major compared to the ligand. Among the studied complexes, [Cd(DE)Br2] exhibited the most promising antimicrobial activity against all the tested microbes compared to its analogs. These results were further supported by molecular docking studies. We believe that these complexes may significantly contribute to the efficient designing of metal-derived agents to treat microbial infections.
Collapse
Affiliation(s)
- Saira Nayab
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Aftab Alam
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Nasir Ahmad
- Department
of Chemistry Islamia College University
Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Waliullah Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Dilawar Farhan Shams
- Department
of Environmental Sciences, Abdul Wali Khan
University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ishaq
Ali Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ateeq
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Said Karim Shah
- Department
of Physics, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|