1
|
Mohlala RL, Rashamuse TJ, Coyanis EM. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 2024; 12:1469677. [PMID: 39359421 PMCID: PMC11445040 DOI: 10.3389/fchem.2024.1469677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods. During synthesis, MCRs provide advantages such as atom economy, recyclable catalysts, moderate conditions, preventing waste, and avoiding solvent use. MCRs also reduce the number of sequential multiple reactions to one step.
Collapse
|
2
|
Maurya MR, Nandi M, Kumar N, Avecilla F. Polymer Supported Nitrogen-Bridged Symmetrical Binuclear Dioxidomolybdenum(VI) Complexes and Their Homogeneous Analogues as Potential Catalysts for Efficient Synthesis of 2-Amino-3-Cyano-4H-Chromenes/Pyrans. Chemistry 2024; 30:e202400631. [PMID: 38491788 DOI: 10.1002/chem.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Reaction of 2-chloromethyl-1H-benzimidazole with known intermediates (i-iii), prepared from diaminoguanidine hydrochloride with salicylaldehyde, 5-bromosalicylaldehyde or 3,5-di-tert-butylsalicylaldehyde, in the presence of triethylamine (NEt3) led to the formation of benzimidazole appended new ligands, H4L1-H4L3 (I-III). The homogeneous nitrogen-bridged symmetrical binuclear complexes, [(MoVIO2)2(L1)(H2O)2] (1), [(MoVIO2)2(L2)(H2O)2] (2) and [(MoVIO2)2(L3)(MeOH)2] (3) have been isolated by reacting these ligands with [MoVIO2(acac)2] in a 1 : 2 molar ratio in refluxing methanol. Using 1 : 1 (ligand to Mo precursor) molar ratio under above reaction conditions resulted in the corresponding mononuclear complexes, [MoVIO2(H2L1)(MeOH)] (4), [MoVIO2(H2L2)(H2O)] (5) and [MoVIO2(H2L3)(MeOH)] (6). The binuclear heterogeneous compounds [(MoVIO2)2(L1)(DMF)2]@PS (PS-1), [(MoVIO2)2(L2)(DMF)2]@PS (PS-2) and [(MoVIO2)2(L3)(DMF)2]@PS (PS-3) have been obtained by immobilization of 1-3 onto chloromethylated polystyrene (PS) beads. All synthesized ligands, homogeneous as well as supported compounds have been characterized by elemental analyses and various spectroscopic methods. Single crystal X-ray diffraction study of complexes 1 and 3 confirms their nitrogen-bridged symmetrical binuclear structures while 4 is mononuclear. Heterogeneous compounds (PS-1-PS-3) have further been studied by microwave plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy along with energy dispersive spectroscopy. These compounds (homogeneous and heterogeneous) were explored for catalytic applications to one-pot multicomponent reactions (MCRs) for efficient synthesis of biologically active 2-amino-3-cyano-4H-chromenes/pyrans (21 examples). Optimising various reaction parameters helped in achieving as high as 97 % yields of products. Though, only half equivalent of the binuclear complexes (1-3) was required compared to mononuclear analogues (4-6) to achieve comparable yields, heterogeneous catalysts have an added advantage due to their stability and recyclability. Suitable reaction mechanism has also been proposed based on isolated intermediates.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruna, 15071, A Coruna, , Spain
| |
Collapse
|
3
|
Podila N, Penddinti NK, Rudrapal M, Rakshit G, Konidala SK, Pulusu VS, Bhandare RR, Shaik AB. Design, synthesis, biological and computational screening of novel pyridine-based thiadiazole derivatives as prospective anti-inflammatory agents. Heliyon 2024; 10:e29390. [PMID: 38655368 PMCID: PMC11036016 DOI: 10.1016/j.heliyon.2024.e29390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, a novel series of pyridine-based thiadiazole derivatives (NTD1-NTD5) were synthesized as prospective anti-inflammatory agents by combining substituted carboxylic acid derivatives of 5-substituted-2-amino-1,3,4-thiadiazole with nicotinoyl isothiocyanate in the presence of acetone. The newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectrometry. First, the compounds underwent rigorous in vivo testing for acute toxicity and anti-inflammatory activity and the results revealed that three compounds-NTD1, NTD2, and NTD3, displayed no acute toxicity and significant anti-inflammatory activity, surpassing the efficacy of the standard drug, diclofenac. Notably, NTD3, which featured benzoic acid substitution, emerged as the most potent anti-inflammatory agent among the screened compounds. To further validate these findings, an in silico docking study was carried out against COX-2 bound to diclofenac (PDB ID: 1pxx). The computational analysis demonstrated that NTD2, and NTD3, exhibited substantial binding affinity, with the lowest binding energies (-8.5 and -8.4, kcal/mol) compared to diclofenac (-8.4 kcal/mol). This alignment between in vivo and in silico data supported the robust anti-inflammatory potential of these derivatives. Moreover, molecular dynamics simulations were conducted, extending over 100 ns, to examine the dynamic interactions between the ligands and the target protein. The results solidified NTD3's position as a leading candidate, showing potent inhibitory activity through strong and sustained interactions, including stable hydrogen bond formations. This was further confirmed by RMSD values of 2-2.5 Å and 2-3Ǻ, reinforcing NTD3's potential as a useful anti-inflammatory agent. The drug likeness analysis of NTD3 through SwissADME indicated that most of the predicted parameters including Lipinski rule were within acceptable limits. While these findings are promising, further research is necessary to elucidate the precise relationships between the chemical structures and their activity, as well as to understand the mechanisms underlying their pharmacological effects. This study lays the foundation for the development of novel anti-inflammatory therapeutics, potentially offering improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Naresh Podila
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | | | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, India, Ranchi, 835215, Jharkhand, India
| | - Sathish Kumar Konidala
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Veera Shakar Pulusu
- Ohio University, Department of Chemistry & Biochemistry, Athens, OH, USA, 45701
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P O Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, P O Box 346, Ajman, United Arab Emirates
| | - Afzal B. Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
4
|
Mohamed MA, Abouzied AS, Reyad A, Sayed Abdelsalam Zaki ME, Abdelgawad FE, Al-Humaidi JY, Gomha SM. Novel terpyridines as Staphylococcus aureus gyrase inhibitors: efficient synthesis and antibacterial assessment via solvent-drop grinding. Future Med Chem 2024; 16:205-220. [PMID: 38230640 DOI: 10.4155/fmc-2023-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Aim: This study was designed to synthesize a novel series of terpyridines with potential antibacterial properties, targeting multidrug resistance. Materials & methods: Terpyridines (4a-h and 6a-c) were synthesized via a one-pot multicomponent reaction using 2,6-diacetylpyridines, benzaldehyde derivatives and malononitrile or ethyl 2-cyanoacetate. The reactions, conducted under grinding conditions with glacial acetic acid, produced high-yield compounds, confirmed by spectroscopic data. Results: The synthesized terpyridines exhibited potent antibacterial activity. Notably, compounds 4d and 4h demonstrated significant inhibition zones against Staphylococcus aureus and Bacillus subtilis, outperforming ciprofloxacin. Conclusion: Molecular docking studies highlighted compounds 4d, 4h and 6c as having strong binding affinity to DNA gyrase B, correlating with their robust antibacterial activity, suggesting their potential as effective agents against multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Mahmoud Abdalla Mohamed
- Technology of Textile Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
- Chemistry Department, Faculty of Science and Humanity study, Afif, Shaqra University, Saudi Arabia
| | - Amr Salah Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control & Research, Giza, 12311, Egypt
| | - Amany Reyad
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | | | - Fathy Elsayed Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Jehan Yahya Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Sobhi Mohamed Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
5
|
Shafiq N, Shahzad N, Rida F, Ahmad Z, Nazir HA, Arshad U, Zareen G, Attiq N, Parveen S, Rashid M, Ali B. One-pot multicomponent synthesis of novel pyridine derivatives for antidiabetic and antiproliferative activities. Future Med Chem 2023; 15:1069-1089. [PMID: 37503685 DOI: 10.4155/fmc-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Due to the close relationship of diabetes with hypertension reported in various research, a set of pyridine derivatives with US FDA-approved drug cores were designed and integrated by artificial intelligence. Methods: Novel pyridines were designed and synthesized. Compounds MNS-1-MNS-4 were evaluated for their structure and were screened for their in vitro antidiabetic (α-amylase) activity and anticancer (HepG2) activity by methyl thiazolyl tetrazolium assay. Comparative 3D quantitative structure-activity relationship analysis and pharmacophore generation were carried out. Results: The study revealed MNS-1 and MNS-4 as good alternatives to acarbose as antidiabetic agents, and MNS-2 as a more viable, better alternative to doxorubicin in the methyl thiazolyl tetrazolium assay. Conclusion: This combination of studies identifies new and more active analogs of existing FDA-approved drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Nabeel Shahzad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Fatima Rida
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Zaheer Ahmad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Hafiza Ayesha Nazir
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Gul Zareen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Naila Attiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Basharat Ali
- Department of Chemistry, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| |
Collapse
|