1
|
Li Y, Feng Y, Chen D. Interfering Nuclear Protein Laminb1 Induces DNA Damage and Reduces Vemurafenib Resistance in Melanoma Cells In Vitro. Cancers (Basel) 2024; 16:4060. [PMID: 39682248 DOI: 10.3390/cancers16234060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Drug resistance poses a substantial clinical challenge in melanoma treatment, yet the underlying mechanism remains elusive. Here, we report the novel role of laminB1, a nuclear structure protein, in regulating the response of BRAF-mutated melanoma cells to vemurafenib. RESULTS Our analysis of clinical samples and existing databases highlights the tight correlation between the laminB1 expression level and melanoma progression and prognosis. Notably, we observe that laminB1 expression is upregulated when BRAF-mutated melanoma cells develop resistance to vemurafenib. The knockdown of laminB1 substantially increases the sensitivity of melanoma cells to vemurafenib. Furthermore, we found laminB1 suppression increases cell apoptosis via the escalation of DNA damage in a vemurafenib-dose-dependent manner. Conversely, protective cell autophagy is negatively regulated by laminB1 suppression. Interestingly, this distinct regulation pattern of apoptosis and autophagy by laminB1 cooperatively promotes the response of BRAF-mutated melanoma cells to vemurafenib. CONCLUSIONS Our findings unveil the potential of laminB1 as both a diagnosis marker and a therapeutic target of melanoma.
Collapse
Affiliation(s)
- Yuan Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuqing Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Dan Chen
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Zanrè V, Bellinato F, Cardile A, Passarini C, Di Bella S, Menegazzi M. BRAF-Mutated Melanoma Cell Lines Develop Distinct Molecular Signatures After Prolonged Exposure to AZ628 or Dabrafenib: Potential Benefits of the Antiretroviral Treatments Cabotegravir or Doravirine on BRAF-Inhibitor-Resistant Cells. Int J Mol Sci 2024; 25:11939. [PMID: 39596009 PMCID: PMC11593403 DOI: 10.3390/ijms252211939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell lines, were treated for 4-5 months with RAF inhibitor dabrafenib or AZ628, leading to drug resistance over time. The resistant cells showed altered molecular signatures, with differences in cell cycle regulation and the propensity of cell death. Dabrafenib-resistant cells maintained high proliferative activity, while AZ628-resistant cells, especially A375 cells, exhibited slow-cycling, and a senescent-like phenotype with high susceptibility to ferroptosis, a form of cell death driven by iron. Antiretroviral drugs doravirine and cabotegravir, known for their effects on human endogenous retroviruses, were tested for their impact on these resistant melanoma cells. Both drugs reduced cell viability and colony formation in resistant cell lines. Doravirine was particularly effective in reactivating apoptosis and reducing cell growth in highly proliferative resistant cells by increasing tumor-suppressor proteins p16Ink4a and p27Kip1. These findings suggest that antiretroviral drugs can influence apoptosis and cell proliferation in RAF-inhibitor-resistant melanoma cells, offering potential therapeutic strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Valentina Zanrè
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (V.Z.)
| | - Francesco Bellinato
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy;
| | - Alessia Cardile
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (V.Z.)
| | - Carlotta Passarini
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (V.Z.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy;
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (V.Z.)
| |
Collapse
|
3
|
Aguilera-Durán G, Hernández-Castro S, Loera-García BV, Rivera-Vargas A, Alvarez-Baltazar JM, Cuevas-Flores MDR, Romo-Mancillas A. Ursolic acid interaction with transcription factors BRAF, V600E, and V600K: a computational approach towards new potential melanoma treatments. J Mol Model 2024; 30:373. [PMID: 39387972 DOI: 10.1007/s00894-024-06165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Melanoma is one of the cancers with the highest mortality rate for its ability to metastasize. Several targets have undergone investigation for the development of drugs against this pathology. One of the main targets is the kinase BRAF (RAF, rapidly accelerated fibrosarcoma). The most common mutation in melanoma is BRAFV600E and has been reported in 50-90% of patients with melanoma. Due to the relevance of the BRAFV600E mutation, inhibitors to this kinase have been developed, vemurafenib-OMe and dabrafenib. Ursolic acid (UA) is a pentacyclic triterpene with a privileged structure, the pentacycle scaffold, which allows to have a broad variety of biological activity; the most studied is its anticancer capacity. In this work, we reported the interaction profile of vemurafenib-OMe, dabrafenib, and UA, to define whether UA has binding capacity to BRAFWT, BRAFV600E, and BRAFV600K. Homology modeling of BRAFWT, V600E, and V600K; molecular docking; and molecular dynamics simulations were carried out and interactions and residues relevant to the binding of the inhibitors were obtained. We found that UA, like the inhibitors, presents hydrogen bond interactions, and hydrophobic interactions of van der Waals, and π-stacking with I463, Q530, C532, and F583. The ΔG of ursolic acid in complex with BRAFV600K (- 63.31 kcal/mol) is comparable to the ΔG of the selective inhibitor dabrafenib (- 63.32 kcal/mol) in complex to BRAFV600K and presents a ΔG like vemurafenib-OMe with BRAFWT and V600E. With this information, ursolic acid could be considered as a lead compound for design cycles and to optimize the binding profile and the selectivity towards mutations for the development of new selective inhibitors for BRAFV600E and V600K to new potential melanoma treatments. METHODS The homology modeling calculations were executed on the public servers I-TASSER and ROBETTA, followed by molecular docking calculations using AutoGrid 4.2.6, AutoDockGPU 1.5.3, and AutoDockTools 1.5.6. Molecular dynamics and metadynamics simulations were performed in the Desmond module of the academic version of the Schrödinger-Maestro 2020-4 program, utilizing the OPLS-2005 force field. Ligand-protein interactions were evaluated using Schrödinger-Maestro program, LigPlot + , and PLIP (protein-ligand interaction profiler). Finally, all of the protein figures presented in this article were made in the PyMOL program.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Laboratorio de Química Cuántica y Modelado Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Mexico.
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico.
| | - Stephanie Hernández-Castro
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - Brenda V Loera-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Zona Universitaria, 78210, San Luis Potosí, Mexico
| | - Alex Rivera-Vargas
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - J M Alvarez-Baltazar
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - Ma Del Refugio Cuevas-Flores
- Laboratorio de Química Cuántica y Modelado Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Mexico
| | - Antonio Romo-Mancillas
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico.
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico.
| |
Collapse
|
4
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
5
|
Barretto AJB, Orda MA, Tsai PW, Tayo LL. Analysis of Modular Hub Genes and Therapeutic Targets across Stages of Non-Small Cell Lung Cancer Transcriptome. Genes (Basel) 2024; 15:1248. [PMID: 39457373 PMCID: PMC11507033 DOI: 10.3390/genes15101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), representing 85% of lung cancer cases, is characterized by its heterogeneity and progression through distinct stages. This study applied Weighted Gene Co-expression Network Analysis (WGCNA) to explore the molecular mechanisms of NSCLC and identify potential therapeutic targets. Gene expression data from the GEO database were analyzed across four NSCLC stages (NSCLC1, NSCLC2, NSCLC3, and NSCLC4), with the NSCLC2 dataset selected as the reference for module preservation analysis. WGCNA identified eight highly preserved modules-Cyan, Yellow, Red, Dark Turquoise, Turquoise, White, Purple, and Royal Blue-across datasets, which were enriched in key pathways such as "Cell cycle" and "Pathways in cancer", involving processes like cell division and inflammatory responses. Hub genes, including PLK1, CDK1, and EGFR, emerged as critical regulators of tumor proliferation and immune responses. Estrogen receptor ESR1 was also highlighted, correlating with improved survival outcomes, suggesting its potential as a prognostic marker. Signature-based drug repurposing analysis identified promising therapeutic candidates, including GW-5074, which inhibits RAF and disrupts the EGFR-RAS-RAF-MEK-ERK signaling cascade, and olomoucine, a CDK1 inhibitor. Additional candidates like pinocembrin, which reduces NSCLC cell invasion by modulating epithelial-mesenchymal transition, and citalopram, an SSRI with anti-carcinogenic properties, were also identified. These findings provide valuable insights into the molecular underpinnings of NSCLC and suggest new directions for therapeutic strategies through drug repurposing.
Collapse
Affiliation(s)
- Angeli Joy B. Barretto
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (A.J.B.B.); (M.A.O.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Marco A. Orda
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (A.J.B.B.); (M.A.O.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Po-wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (A.J.B.B.); (M.A.O.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
6
|
Loftus AW, Zarei M, Kakish H, Hajihassani O, Hue JJ, Boutros C, Graor HJ, Nakazzi F, Bahlibi T, Winter JM, Rothermel LD. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma. Cancer Treat Rev 2024; 129:102795. [PMID: 38972133 PMCID: PMC11361048 DOI: 10.1016/j.ctrv.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.
Collapse
Affiliation(s)
- Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Christina Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Faith Nakazzi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tsegaw Bahlibi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Niazi SK, Magoola M. Transcytosis-Driven Treatment of Neurodegenerative Disorders by mRNA-Expressed Antibody-Transferrin Conjugates. Biomedicines 2024; 12:851. [PMID: 38672205 PMCID: PMC11048317 DOI: 10.3390/biomedicines12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The recent setbacks in the withdrawal and approval delays of antibody treatments of neurodegenerative disorders (NDs), attributed to their poor entry across the blood-brain barrier (BBB), emphasize the need to bring novel approaches to enhance the entry across the BBB. One such approach is conjugating the antibodies that bind brain proteins responsible for NDs with the transferrin molecule. This glycoprotein transports iron into cells, connecting with the transferrin receptors (TfRs), piggybacking an antibody-transferrin complex that can subsequently release the antibody in the brain or stay connected while letting the antibody bind. This process increases the concentration of antibodies in the brain, enhancing therapeutic efficacy with targeted delivery and minimum systemic side effects. Currently, this approach is experimented with using drug-transferring conjugates assembled in vitro. Still, a more efficient and safer alternative is to express the conjugate using mRNA technology, as detailed in this paper. This approach will expedite safer discoveries that can be made available at a much lower cost than the recombinant process with in vitro conjugation. Most importantly, the recommendations made in this paper may save the antibodies against the NDs that seem to be failing despite their regulatory approvals.
Collapse
|
8
|
Sabt A, Khedr MA, Eldehna WM, Elshamy AI, Abdelhameed MF, Allam RM, Batran RZ. New pyrazolylindolin-2-one based coumarin derivatives as anti-melanoma agents: design, synthesis, dual BRAF V600E/VEGFR-2 inhibition, and computational studies. RSC Adv 2024; 14:5907-5925. [PMID: 38370458 PMCID: PMC10870110 DOI: 10.1039/d4ra00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Malignant melanoma is the most invasive skin cancer with the highest risk of death. The inhibition of BRAFV600E appears relevant for overcoming secondary resistance developed during melanoma treatment. BRAFV600E triggers angiogenesis via modification of the expression of angiogenic inducers, which play a crucial role in the metastasis of melanoma. Accordingly, the dual inhibition of the BRAFV600E/VEGFR-2 signaling pathway is considered a rational approach in the design of anti-melanoma candidates. In this study, a new class of pyrazolylindolin-2-one linked coumarin derivatives as dual BRAFV600E/VEGFR-2 inhibitors targeting A375 melanoma cells was designed. Target compounds were tailored to occupy the pockets of BRAFV600E and VEGFR-2. Most of the synthesized compounds demonstrated potent mean growth inhibitory activity against A375 cells. Compound 4j was the most active cytotoxic derivative, displaying an IC50 value at a low micromolar concentration of 0.96 μM with a significant safety profile. Moreover, 4j showed dual potent inhibitory activity against BRAFV600E and VEGFR-2 (IC50 = 1.033 and 0.64 μM, respectively) and was more active than the reference drug sorafenib. Furthermore, derivative 4j caused significant G0/G1 cell cycle arrest, induced apoptosis, and inhibited the migration of melanoma cells. Molecular docking showed that compound 4j achieved the highest ΔG value of -9.5 kcal mol-1 against BRAFV600E and significant ΔG of -8.47 kcal mol-1 against VEGFR-2. Furthermore, the structure-activity relationship study revealed that TPSA directly contributed to the anticancer activity of the tested compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohammed A Khedr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University Safat 13110 Kuwait
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University 11795 Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| |
Collapse
|
9
|
Deng L, Yang Y, Huang J. [Progress of BRAF Gene Alteration in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:73-80. [PMID: 38296628 PMCID: PMC10895288 DOI: 10.3779/j.issn.1009-3419.2024.101.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/02/2024]
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) alteration is one of the most essential driver genes of non-small cell lung cancer (NSCLC). BRAF encodes serine/threonine protein kinases, and its mutations typically lead to protein compositional activation, thereby activating the mitogen-activated protein kinase kinase (MEK) signaling pathway. A promising new approach for the treatment of mutated BRAF and/or downstream MEK may provide customized treatment opportunities for BRAF driven NSCLC patients. However, combination therapy is necessary to overcome the difficulties such as short duration of benefit, poor therapeutic effect of non-V600 BRAF mutations and susceptibility to drug resistance. This article reviewed the progress in structural characteristics, related signaling pathways, mutation types of BRAF gene, and the clinical pathological relationship between BRAF mutations and NSCLC, as well as the therapy, in order to provide more evidences for clinical doctors to make treatment decisions.
.
Collapse
Affiliation(s)
- Libian Deng
- Department of Pathology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Yaxian Yang
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou 510700, China
| | - Jian Huang
- Department of Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|