1
|
Hadi H, Gassoumi B, Nasr S, Safari R, Basha AA, Imran PM, Ghalla H, Caccamo MT, Ayachi S. Design, Transport/Molecular Scale Electronics, Electric Properties, and a Conventional Quantum Study of a New Potential Molecular Switch for Nanoelectronic Devices. ACS OMEGA 2024; 9:1029-1041. [PMID: 38222547 PMCID: PMC10785780 DOI: 10.1021/acsomega.3c07257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
In this study, we examined the influence of an external electric field applied in two directions: horizontal (X-axis) and vertical (Y-axis) on the electronic and vibrational properties of a field-effect molecular switch, denoted as M. We employed density functional theory and quantum theory of atoms in molecules for this analysis. The current-voltage (I-V) characteristic curve of molecular switch system M was computed by applying the Landauer formula. The results showed that the switching mechanism depends on the direction of the electric field. When the electric field is applied along the X-axis and its intensity is around 0.01 au, OFF/ON switching mechanisms occur. By utilizing electronic localization functions and localized-orbital locator topological analysis, we observed significant intramolecular electronic charge transfer "back and forth" in Au-M-Au systems when compared to the isolated system. The noncovalent interaction revealed that the Au-M-Au complex is also stabilized by electrostatic interactions. However, if the electric field is applied along the Y-axis, a switching mechanism (OFF/ON) occurs when the electric field intensity reaches 0.008 au. Additionally, the local electronic phenomenological coefficients (Lelec) of this field-effect molecular switch were determined by using the Onsager phenomenological approach. It can also be predicted that the molecular electrical conductance (G) increases as Lelec increases. Finally, the electronic and vibrational properties of the proposed models M and Au-M-Au exhibit a powerful switching mechanism that may potentially be employed in a new generation of electronic devices.
Collapse
Affiliation(s)
- Hamid Hadi
- Department
of Chemistry, Physical Chemistry Group, Lorestan University, Khorramabad 6815144316, Iran
| | - Bouzid Gassoumi
- Laboratory
of Advanced Materials and Interfaces (LIMA), Faculty of Sciences,
Avenue of the Environment, University of
Monastir, Monastir 5019, Tunisia
| | - Samia Nasr
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Reza Safari
- Department
of Chemistry, Physical Chemistry Group, University of Qom, Qom 3716146611, Iran
| | - A. Aathif Basha
- Department
of Physics, Islamiah College (Autonomous), Vaniyambadi 635752, India
| | | | - Houcine Ghalla
- Quantum
and Statistical Physics Laboratory, Faculty of Sciences, Avenue of
the Environment, University of Monastir, Monastir 5019, Tunisia
| | - Maria Teresa Caccamo
- Dipartimento
di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della
Terra, Università di Messina, Viale Ferdinando Stagno D’Alcontres
n°31, Sant’Agata, Messina 98166, Italy
| | - Sahbi Ayachi
- Laboratory
of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences,
Avenue of the Environment, University of
Monastir, Monastir 5019, Tunisia
| |
Collapse
|