1
|
Doleschal MN, Miller J, Jain S, Zakharov AV, Rai G, Simeonov A, Baljinnyam B, Zhuang Z. Cell-Based Covalent-Capture Deubiquitinase Assay for Inhibitor Discovery. ACS Pharmacol Transl Sci 2024; 7:2827-2839. [PMID: 39296272 PMCID: PMC11406687 DOI: 10.1021/acsptsci.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
Ubiquitination is a post-translational modification that elicits a variety of cellular responses. Deubiquitinases (DUBs) remove ubiquitin moieties from proteins and modulate cellular processes by counteracting the ubiquitin ligase activities. Ubiquitination and deubiquitination processes are tightly regulated by different mechanisms and their dysregulation is associated with many diseases. Discovery of DUB inhibitors could not only lead to therapeutics but also facilitate the understanding of ubiquitination/deubiquitination processes and their regulatory mechanisms. To enable the inhibitor discovery against DUBs, we developed a cell-based DUB assay that utilizes a cell-permeable ubiquitin probe, Biotin-cR10-Ub-PA, to covalently label DUBs in their native cellular environment. Amplified luminescent proximity homogeneous assay (Alpha, specifically AlphaLISA) is utilized to quantitatively assess the capture of the target DUB by the Biotin-cR10-Ub-PA probe. We demonstrated that this new cell-based DUB assay is robust and amenable to high-throughput screening. Human USP15 was selected as a DUB of interest and screened against a library of protease inhibitors as a proof of concept. In addition to the widely adopted pan-DUB inhibitor PR-619, several other DUB inhibitors from the library were also identified as hits. This new DUB assay can be readily adapted for inhibitor discovery against many other human DUBs to identify potent and cell-permeable inhibitors.
Collapse
Affiliation(s)
- Megan N Doleschal
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Jenna Miller
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Staerz SD, Anamoah C, Tepe JJ. 20S proteasome enhancers prevent cytotoxic tubulin polymerization-promoting protein induced α-synuclein aggregation. iScience 2024; 27:110166. [PMID: 38974969 PMCID: PMC11225362 DOI: 10.1016/j.isci.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases defined by the presence of α-synuclein inclusions. The location and composition of these α-synuclein inclusions directly correlate to the disease pattern. The inclusions in Multiple System Atrophy are located predominantly in oligodendrocytes and are rich in a second protein, p25α. P25α plays a key role in neuronal myelination by oligodendrocytes. In healthy oligodendrocytes, there is little to no α-synuclein present. If aberrant α-synuclein is present, p25α leaves the myelin sheaths and quickly co-aggregates with α-synuclein, resulting in the disruption of the cellular process and ultimately cell death. Herein, we report that p25α is susceptible for 20S proteasome-mediated degradation and that p25α induces α-synuclein aggregation, resulting in proteasome impairment and cell death. In addition, we identified small molecules 20S proteasome enhancers that prevent p25α induced α-synuclein fibrilization, restore proteasome impairment, and enhance cell viability.
Collapse
Affiliation(s)
- Sophia D. Staerz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Charles Anamoah
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
3
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|