1
|
Zhang Y, Amin K, Zhang Q, Yu Z, Jing W, Wang Z, Lyu B, Yu H. The application of dietary fibre as microcapsule wall material in food processing. Food Chem 2025; 463:141195. [PMID: 39276558 DOI: 10.1016/j.foodchem.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Qiang Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
2
|
Devi S, Negi S, Tandel N, Dalai SK, Tyagi RK. Oleuropein: a viable therapeutic option for malaria and cancer. Drug Discov Today 2024; 30:104254. [PMID: 39608487 DOI: 10.1016/j.drudis.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Oleuropein (OLP) holds promise as a therapeutic candidate for both Plasmodium falciparum infection and cancer. It modulates the phosphoinositide 3-kinase (PI3K)-Akt1 signaling pathway to regulate inflammation and restore immune homeostasis. Moreover, it influences the cell death/autophagy axis, along with increasing the antimalarial efficacy of artemisinin. Our findings indicate that the anti-breast-cancer effect of OLP could be mediated by regulating the balance of T helper 17 and regulatory T cells. Additionally, we discuss the use of hematopoietic-stem-cell-transplanted immunodeficient mice with a humanized immune system for validating the antimalarial activity, autophagy and anticancer activity of OLP.
Collapse
Affiliation(s)
- Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Nikunj Tandel
- CSIR-Centre For Cellular & Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Gujarat 382481, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Golalipour A, Mohammadi A, Hosseinzadeh S, Soltani A, Erfani-Moghadam V. Synergistic cytotoxicity of olive leaf extract-loaded lipid nanocarriers combined with Newcastle disease virus against cervical cancer cells. PLoS One 2024; 19:e0308599. [PMID: 39141643 PMCID: PMC11324187 DOI: 10.1371/journal.pone.0308599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Despite recent medical progress, cervical cancer remains a major global health concern for women. Current standard treatments have limitations such as non-specific toxicity that necessitate development of safer and more effective therapeutic strategies. This research evaluated the combinatorial effects of olive leaf extract (OLE), rich in anti-cancer polyphenols, and the oncolytic Newcastle disease virus (NDV) against human cervical cancer cells. OLE was efficiently encapsulated (>94% loading) within MF59 lipid nanoparticles and nanostructured lipid carriers (NLCs; contains Precirol as NLC-P, contains Lecithin as NLC-L) to enhance stability, bioavailability, and targeted delivery. Physicochemical analysis confirmed successful encapsulation of OLE within nanoparticles smaller than 150 nm. In vitro cytotoxicity assays demonstrated significantly higher toxicity of the OLE-loaded nanoparticle formulations on HeLa cancer cells versus HDF normal cells (P<0.05). MF59 achieved the highest encapsulation efficiency, while NLC-P had the best drug release profile. NDV selectively infected and killed HeLa cells versus HDF cells. Notably, combining NDV with OLE-loaded nanoparticles led to significantly enhanced synergistic cytotoxicity against cancer cells (P<0.05), with NLC-P (OLE) and NDV producing the strongest effects. Apoptosis and cell cycle analyses confirmed the increased anti-cancer activity of the combinatorial treatment, which induced cell cycle arrest. This study provides evidence that co-delivery of OLE-loaded lipid nanoparticles and NDV potentiates anti-cancer activity against cervical cancer cells in vitro through a synergistic mechanism, warranting further development as a promising alternative cervical cancer therapy.
Collapse
Affiliation(s)
- Arash Golalipour
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Alireza Soltani
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Seaf Elnasr TA, Ibrahim OM, Alhumaimess MS, Alsohaimi IH, El-Ossaily YA, Hussein MF, Rafea MA, Hassan HMA, Sobhy SE, Hafez EE, El-Aassar MR. Olive leaf extract-derived chitosan-metal nanocomposite: Green synthesis and dual antimicrobial-anticancer action. Int J Biol Macromol 2024; 270:132252. [PMID: 38729503 DOI: 10.1016/j.ijbiomac.2024.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Tarek A Seaf Elnasr
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Omar M Ibrahim
- Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mosaed S Alhumaimess
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Yasser A El-Ossaily
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Modather F Hussein
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed Abdel Rafea
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Sherien E Sobhy
- Department of Plant Protection and bimolecular diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), P.O. 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and bimolecular diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), P.O. 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| |
Collapse
|
5
|
Mansour HMM, Shehata MG, Abdo EM, Sharaf MM, Hafez ESE, Galal Darwish AM. Comparative analysis of silver-nanoparticles and whey-encapsulated particles from olive leaf water extracts: Characteristics and biological activity. PLoS One 2023; 18:e0296032. [PMID: 38109310 PMCID: PMC10727426 DOI: 10.1371/journal.pone.0296032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Nanotechnology applications have been employed to improve the stability of bioactive components and drug delivery. Natural-based extracts, especially olive leaf extracts, have been associated with the green economy not only as recycled agri-waste but also in the prevention and treatment of various non-communicable diseases (NCDs). The aim of this work was to provide a comparison between the characteristics, biological activity, and gene expression of water extract of olive leaves (OLE), green synthesized OLE silver nanoparticles (OL/Ag-NPs), and OLE whey protein capsules (OL/WPNs) of the two olive varieties, Tofahy and Shemlali. The particles were characterized by dynamic light scattering, scanning electron microscope (SEM), and Fourier transform infrared. The bioactive compounds of the preparations were evaluated for their antioxidant activity and anticancer effect on HCT-116 colorectal cells as well as for their regulatory effects on cytochrome C oxidase (Cox1) and tumor necrosis factor α (TNF-α) genes. (OL/Ag-NPs) were found to be smaller than (OL/WPNs) with sizes of (37.46±1.85 and 44.86±1.62 nm) and (227.20±2.43 and 553.02±3.60 nm) for Tofahy and Shemlali, respectively. SEM showed that Shemlali (OL/Ag-NPs) had the least aggregation due to their highest Ƹ-potential (-31.76 ± 0.87 mV). The preparations were relatively nontoxic to Vero cells (IC50 = 151.94-789.25 μg/mL), while they were cytotoxic to HCT-116 colorectal cells (IC50 = 77.54-320.64 μg/mL). Shemlali and Tofahy OLE and Tofahy OL/Ag-NPs had a higher selectivity index (2.97-7.08 μg/mL) than doxorubicin (2.36 μg/mL), indicating promising anticancer activity. Moreover, Shemlali preparations regulated the expression of Cox1 (up-regulation) and TNF-α (down-regulation) on HCT-116 cells, revealing their efficiency in suppressing the expression of genes that promote cancer cell proliferation. (OL/Ag-NPs) from Tofahy and Shemlali were found to be more stable, effective, and safe than (OL/WPNs). Consequently, OL/Ag-NPs, especially Tofahy, are the best and safest nanoscale particles that can be safely used in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed G. Shehata
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Eman M. Abdo
- Food Science Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mona Mohamad Sharaf
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - El-sayed E. Hafez
- Plant Protection and Bio-Molecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M. Galal Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| |
Collapse
|