1
|
Lu XY, Wu HP, Ma H, Li H, Li J, Liu YT, Pan ZY, Xie Y, Wang L, Ren B, Liu GK. Deep Learning-Assisted Spectrum-Structure Correlation: State-of-the-Art and Perspectives. Anal Chem 2024; 96:7959-7975. [PMID: 38662943 DOI: 10.1021/acs.analchem.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spectrum-structure correlation is playing an increasingly crucial role in spectral analysis and has undergone significant development in recent decades. With the advancement of spectrometers, the high-throughput detection triggers the explosive growth of spectral data, and the research extension from small molecules to biomolecules accompanies massive chemical space. Facing the evolving landscape of spectrum-structure correlation, conventional chemometrics becomes ill-equipped, and deep learning assisted chemometrics rapidly emerges as a flourishing approach with superior ability of extracting latent features and making precise predictions. In this review, the molecular and spectral representations and fundamental knowledge of deep learning are first introduced. We then summarize the development of how deep learning assist to establish the correlation between spectrum and molecular structure in the recent 5 years, by empowering spectral prediction (i.e., forward structure-spectrum correlation) and further enabling library matching and de novo molecular generation (i.e., inverse spectrum-structure correlation). Finally, we highlight the most important open issues persisted with corresponding potential solutions. With the fast development of deep learning, it is expected to see ultimate solution of establishing spectrum-structure correlation soon, which would trigger substantial development of various disciplines.
Collapse
Affiliation(s)
- Xin-Yu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hao-Ping Wu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hui Li
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, Xiamen 361005, P. R. China
| | - Jia Li
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Ti Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Zheng-Yan Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yi Xie
- School of Informatics, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| |
Collapse
|
2
|
Nicolle A, Deng S, Ihme M, Kuzhagaliyeva N, Ibrahim EA, Farooq A. Mixtures Recomposition by Neural Nets: A Multidisciplinary Overview. J Chem Inf Model 2024; 64:597-620. [PMID: 38284618 DOI: 10.1021/acs.jcim.3c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Artificial Neural Networks (ANNs) are transforming how we understand chemical mixtures, providing an expressive view of the chemical space and multiscale processes. Their hybridization with physical knowledge can bridge the gap between predictivity and understanding of the underlying processes. This overview explores recent progress in ANNs, particularly their potential in the 'recomposition' of chemical mixtures. Graph-based representations reveal patterns among mixture components, and deep learning models excel in capturing complexity and symmetries when compared to traditional Quantitative Structure-Property Relationship models. Key components, such as Hamiltonian networks and convolution operations, play a central role in representing multiscale mixtures. The integration of ANNs with Chemical Reaction Networks and Physics-Informed Neural Networks for inverse chemical kinetic problems is also examined. The combination of sensors with ANNs shows promise in optical and biomimetic applications. A common ground is identified in the context of statistical physics, where ANN-based methods iteratively adapt their models by blending their initial states with training data. The concept of mixture recomposition unveils a reciprocal inspiration between ANNs and reactive mixtures, highlighting learning behaviors influenced by the training environment.
Collapse
Affiliation(s)
- Andre Nicolle
- Aramco Fuel Research Center, Rueil-Malmaison 92852, France
| | - Sili Deng
- Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, United States
| | - Matthias Ihme
- Stanford University, Stanford 94305, California, United States
| | | | - Emad Al Ibrahim
- King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Aamir Farooq
- King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|