1
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing, 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing, 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing, 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing, 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing, 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing, 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing, 401147, China.
| |
Collapse
|
2
|
Nettey-Oppong E, Ali A, Ahn J, Muhammad R, Lee HJ, Jeong HW, Byun KM, Choi SH. Development of a 3D Printing-Enabled Cost-Effective Multimodal Raman Probe with High Signal-to-noise Ratio Raman Spectrum Measurements. ACS OMEGA 2024; 9:42822-42838. [PMID: 39464463 PMCID: PMC11500145 DOI: 10.1021/acsomega.4c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Raman spectroscopy has emerged as a pivotal analytical instrument, valued for its nondestructive capabilities and its capacity to provide essential material-specific insights. However, the excessive costs associated with commercially available Raman instruments present a barrier to their accessibility for many academic institutions and broader usage. Herein, we introduce an affordable and accessible approach to constructing a versatile Raman instrument capable of accommodating both spectroscopic and microscopic analyses. Through this multimodal approach that concurrently captures Raman signal and image data, we demonstrate color-based alcohol detection, showcase a high signal-to-noise ratio achieved through meticulous hardware design and signal processing, and present a cost-effective, modular design utilizing 3D printing technology. This system offers adaptability to address diverse research needs and requirements. We systematically detail the fabrication process, including the utilization of a 3D printer to produce necessary components, ultimately resulting in the assembly of a functional Raman probe system. Our experiments and subsequent analyses substantiate the accuracy and reliability of the constructed system. Specifically, we conducted experiments involving three distinct samples: water, ethanol, and methanol using the Raman probe, successfully confirming their unique Raman spectra. Furthermore, our Raman probe accurately identified ethanol concentration by assessing mixed samples with varying water-to-ethanol ratios and demonstrated a coefficient of determination value of 0.9993. This underscores the performance of the constructed Raman probe and positions it as a viable option for characterization, particularly in regions where access to conventional Raman probe may be limited.
Collapse
Affiliation(s)
| | - Ahmed Ali
- Department
of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Jiwon Ahn
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Riaz Muhammad
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hyun Jin Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hyun-Woo Jeong
- Department
of Biomedical Engineering, Eulji University, Seongnamsi 13135, Republic of Korea
| | - Kyung Min Byun
- Department
of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
- Department
of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung Ho Choi
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Department
of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| |
Collapse
|
3
|
Li S, Gao S, Su L, Zhang M. Evaluating the accuracy of Raman spectroscopy in differentiating leukemia patients from healthy individuals: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2024; 48:104260. [PMID: 38950876 DOI: 10.1016/j.pdpdt.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE To assess the accuracy of Raman spectroscopy in distinguishing between patients with leukemia and healthy individuals. METHOD PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases were searched for relevant articles published from inception of the respective database to November 1, 2023. The pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR), were calculated along with their corresponding 95 % confidence intervals (CI). A summary comprehensive receiver operating characteristic curve (SROC) was constructed and the area under the curve (AUC) was calculated. The degree of heterogeneity was tested and analyzed. RESULTS Fifteen groups of original studies from 13 articles were included. The pooled SEN and SPE were 0.93 (95 % CI, [0.92 -0.93]) and 0.91(95 % CI, [0.90-0.92]), respectively. The DOR was 613.01 (95 %CI, [270.79-1387.75]), and the AUC was 0.99. The Deeks' funnel plot asymmetry test indicated no significant publication bias among the included studies (bias coefficient, 40.80; P = 0.13 < 0.10). The meta-regression analysis findings indicated that the observed heterogeneity could be attributed to variations in sample categories and Raman spectroscopy techniques. CONCLUSION We confirmed that Raman spectroscopy has good accuracy in differentiating patients with leukemia from healthy individuals, and may become a means of leukemia screening in clinical practice. In the case of analysis based on live cells using surface-enhanced Raman spectroscopy (SERS) improved diagnostic efficacy was observed.
Collapse
Affiliation(s)
- Shaotong Li
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Ming Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China
| |
Collapse
|
4
|
Mohamed AA, Sargent E, Williams C, Karve Z, Nair K, Lucke-Wold B. Advancements in Neurosurgical Intraoperative Histology. Tomography 2024; 10:693-704. [PMID: 38787014 PMCID: PMC11125713 DOI: 10.3390/tomography10050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide surgical interventions and optimize patient outcomes. Frozen sectioning has emerged as a vital intraoperative technique, allowing for highly accurate, rapid analysis of tissue samples, although it poses challenges regarding interpretive errors and tissue distortion. Raman histology, based on Raman spectroscopy, has shown great promise in providing label-free, molecular information for accurate intraoperative diagnosis, aiding in tumor resection and the identification of neurodegenerative disease. Techniques including Stimulated Raman Scattering (SRS), Coherent Anti-Stokes Raman Scattering (CARS), Surface-Enhanced Raman Scattering (SERS), and Tip-Enhanced Raman Scattering (TERS) have profoundly enhanced the speed and resolution of Raman imaging. Similarly, Confocal Laser Endomicroscopy (CLE) allows for real-time imaging and the rapid intraoperative histologic evaluation of specimens. While CLE is primarily utilized in gastrointestinal procedures, its application in neurosurgery is promising, particularly in the context of gliomas and meningiomas. This review focuses on discussing the immense progress in intraoperative histology within neurosurgery and provides insight into the impact of these advancements on enhancing patient outcomes.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Emma Sargent
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Cooper Williams
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Zev Karve
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Karthik Nair
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Chen YF, Lee YC, Lin WW, Lu MC, Yang YC, Chiu CW. Application of Nanohybrid Substrates with Layer-by-Layer Self-Assembling Properties to High-Sensitivity Surface-Enhanced Raman Scattering Detection. ACS OMEGA 2024; 9:1894-1903. [PMID: 38222643 PMCID: PMC10785305 DOI: 10.1021/acsomega.3c08608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
The present study was conducted to prepare and investigate large-area, high-sensitivity surface-enhanced Raman scattering (SERS) substrates. Organic/inorganic nanohybrid dispersants consisting of an amphiphilic triblock copolymer (hereafter referred to simply as "copolymer") and graphene oxide (GO) were used to stabilize the growth and size of gold nanoparticles (AuNPs). Ion-dipole forces were present between the AuNPs and copolymer dispersants, while the hydrogen bonds between GO and the copolymer prevented the aggregation of GO, thereby stabilizing the AuNP/GO nanohybrids. Transmission electron microscopy (TEM) revealed that the AuNPs had particle sizes of 25-35 nm and a relatively uniform size distribution. The AuNP/GO nanohybrids were deposited onto the glass substrate by using the solution drop-casting method and employed for SERS detection. The self-assembling properties of two-dimensional sheet-like GO led to a regular lamellar arrangement of AuNP/GO nanohybrids, which could be used for the preparation of large-area SERS substrates. Following removal of the copolymer by annealing at 300 °C for 2 h, measurements were obtained under scanning electron microscopy. The results confirmed that 2D GO nanosheets were capable of stabilizing AuNPs, with the final size reaching approximately 40 nm. These AuNPs were adsorbed on both sides of the GO nanosheets. Because the GO nanosheets were merely 5 nm-thick, a good three-dimensional hot-junction effect was generated along the z-axis of the AuNPs. Lastly, the prepared material was used for the SERS detection of rhodamine 6G (R6G), a commonly used highly fluorescent dye. An enhancement factor (EF) of up to 3.5 × 106 was achieved, and the limit of detection was approximately 10-10 M. Detection limits of 10-10 M and < 10-10 M were also observed with the detection of Direct Blue 200 and the biological molecule adenine. It is therefore evident that AuNP/copolymer/GO nanohybrids are large-area flexible SERS substrates that hold great potential in environmental monitoring and biological system detection applications.
Collapse
Affiliation(s)
| | | | - Wen-Wei Lin
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ming-Chang Lu
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yung-Chi Yang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|