1
|
Costa Monteiro JM, Drigo Filho E. Tunneling Times in an Asymmetric Harmonic Double-Well with Application to Electron Transfers in Biological Macromolecules. ACS OMEGA 2024; 9:49832-49838. [PMID: 39713657 PMCID: PMC11656229 DOI: 10.1021/acsomega.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Tunneling times were calculated in electron transfer processes using an asymmetric harmonic double-well model. The simplicity of a direct variational calculation in the approximate solution of the Schrödinger equation, along with the interpretation of tunneling times within the probabilistic framework of a two-level system, allows for the efficient and accurate determination of tunneling times with minimal computational cost. These calculations were applied to electron transfer processes in the study of the photosynthetic reaction center and in the context of catalysis in UV-induced DNA lesion repair and are in agreement with the experimental, computational, and theoretical results with which they were compared. It was seen that the donor-acceptor distance needed to be adjusted for closer agreement between the calculated and experimentally observed times. However, the adjusted values for this distance remain close to those reported in the literature.
Collapse
Affiliation(s)
- João Marcos Costa Monteiro
- Department of Physics, Institute of
Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Elso Drigo Filho
- Department of Physics, Institute of
Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, 15054-000 São Paulo, Brazil
| |
Collapse
|
2
|
Colombo RP, Nascimento SQ, Crespilho FN. Conductance Channels in a Single-Entity Enzyme. J Phys Chem Lett 2024; 15:10795-10801. [PMID: 39432824 PMCID: PMC11533225 DOI: 10.1021/acs.jpclett.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
For a long time, the prevailing view in the scientific community was that proteins, being complex macromolecules composed of amino acid chains linked by peptide bonds, adopt folded structure with insulating or semiconducting properties, with high bandgaps. However, recent discoveries of unexpectedly high conductance levels, reaching values in the range of dozens of nanosiemens (nS) in proteins, have challenged this conventional understanding. In this study, we used scanning tunneling microscopy (STM) to explore the single-entity conductance properties of enzymatic channels, focusing on bilirubin oxidase (BOD) as a model metalloprotein. By immobilizing BOD on a conductive carbon surface, we discern its preferred orientation, facilitating the formation of electronic and ionic channels. These channels show efficient electron transport (ETp), with apparent conductance up to the 15 nS range. Notably, these conductance pathways are localized, minimizing electron transport barriers due to solvents and ions, underscoring BOD's redox versatility. Furthermore, electron transfer (ET) within the BOD occurs via preferential pathways. The alignment of the conductance channels with hydrophilicity maps, molecular vacancies, and regions accessible to electrolytes explains the observed conductance values. Additionally, BOD exhibits redox activity, with its active center playing a critical role in the ETp process. These findings significantly advance our understanding of the intricate mechanisms that govern ETp processes in proteins, offering new insights into the conductance of metalloproteins.
Collapse
Affiliation(s)
| | - Steffane Q. Nascimento
- 1 São Carlos Institute
of Chemistry, University of São Paulo
(USP), São Carlos, SP 13566-590, Brazil
| | - Frank Nelson Crespilho
- 1 São Carlos Institute
of Chemistry, University of São Paulo
(USP), São Carlos, SP 13566-590, Brazil
| |
Collapse
|
3
|
Pirnia MM, Sarhangi SM, Singharoy A, Matyushov DV. Protein Medium Facilitates Electron Transfer in Photosynthetic Heliobacterial Reaction Center. J Phys Chem B 2024; 128:9714-9723. [PMID: 39348290 DOI: 10.1021/acs.jpcb.4c04956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
This computational study addresses the question of how large membrane-bound proteins of electron transport chains facilitate fast vector-based charge transport. We study electron transfer reactions following ultrafast initial charge separation induced by absorption of light by P800 primary pair and leading to the electron localization at the A0 cofactor. Two subsequent, much slower reactions, electron transfer to the iron-sulfur cluster Fx and reduction of the menaquinone (MQ) cofactor, are studied by combining molecular dynamics simulations, electronic structure calculations, and theoretical modeling. The low value of the electronic coupling between A0 and Fx brings this reaction to the microsecond time scale even at the zero activation barrier. In contrast, A0-MQ electron transfer occurs on a subnanosecond time scale and might become the preferred route for charge transport. We elucidate mechanistic properties of the protein medium allowing fast, vectorial charge transfer. The electric field is high and inhomogeneous inside the protein and is coupled to high polarizabilities of cofactors to significantly lower the reaction barrier. The A0-MQ separation puts this reaction at the edge between the plateau characterizing the reaction dynamical control and exponential falloff due to electronic tunneling. A strong separation in relaxation times of the medium dynamics for the forward and backward reactions promotes vectorial charge transfer.
Collapse
Affiliation(s)
- Mohammad Mehdi Pirnia
- School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| | - Setare Mostajabi Sarhangi
- Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
4
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
5
|
Pagán OR. The complexities of ligand/receptor interactions: Exploring the role of molecular vibrations and quantum tunnelling. Bioessays 2024; 46:e2300195. [PMID: 38459808 DOI: 10.1002/bies.202300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Molecular vibrations and quantum tunneling may link ligand binding to the function of pharmacological receptors. The well-established lock-and-key model explains a ligand's binding and recognition by a receptor; however, a general mechanism by which receptors translate binding into activation, inactivation, or modulation remains elusive. The Vibration Theory of Olfaction was proposed in the 1930s to explain this subset of receptor-mediated phenomena by correlating odorant molecular vibrations to smell, but a mechanism was lacking. In the 1990s, inelastic electron tunneling was proposed as a plausible mechanism for translating molecular vibration to odorant physiology. More recently, studies of ligands' vibrational spectra and the use of deuterated ligand analogs have provided helpful information to study this admittedly controversial hypothesis in metabotropic receptors other than olfactory receptors. In the present work, based in part on published experiments from our laboratory using planarians as an experimental organism, I will present a rationale and possible experimental approach for extending this idea to ligand-gated ion channels.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
6
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|