1
|
Li BB, Zhang GL, Xue QK, Luo P, Zhao X, Xue YB, Wu B, Han B, Liu HJ, Wang ZS, Zheng M, Zhuo MP. Rational Design and Fine Fabrication of Passive Daytime Radiative Cooling Textiles Integrate Antibacterial, UV-Shielding, and Self-Cleaning Characteristics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52633-52644. [PMID: 39300615 DOI: 10.1021/acsami.4c10161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Passive daytime radiative cooling (PDRC) textiles hold substantial potential for localized outdoor cooling of the human body without additional energy consumption, but their limited multifunctional integration severely hinders their practical application. Herein, aluminum-doped zinc oxide (AZO) nanoparticles were purposefully introduced into poly(vinylidene fluoride) (PVDF) nanofibers via a facile electrospinning process, forming a large-scale and flexible PDRC textile with the desired antibacterial, UV-shielding, and self-cleaning capabilities. These prepared PDRC textiles present a weighted sunlight reflection rate of 92.3% and a weighted emissivity of 89.5% in the mid-infrared region. Furthermore, outdoor tests with an average solar intensity of ∼715 W/m2 demonstrated that a skin simulator temperature could be cooled by ∼16.1 °C below the ambient temperature, outperforming cotton fabric by ∼6.3 °C. Owing to the outstanding photocatalytic properties of the AZO nanoparticles, these prepared PVDF textiles exhibit antibacterial properties (Escherichia coli: 99.99%), UV-shielding performance (UPF > 50+), and superior self-cleaning capabilities, providing a cost-effective and eco-friendly avenue for daytime personal thermal management.
Collapse
Affiliation(s)
- Bei-Bei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guo-Liang Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qian-Kun Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang-Biao Xue
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Han
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hai-Juan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zuo-Shan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ming-Peng Zhuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Aizamddin MF, Zainal Ariffin Z, Nor Amdan NA, Nawawi MA, Jani NA, Safian MF, Shaffee SNA, Nik Mohamed Daud NMR, Myo Thant MM, Mahat MM. Highly Durable Antibacterial Textiles: Cross-Linked Protonated Polyaniline-Polyacrylic Acid with Prolonged Electrical Stability. ACS OMEGA 2024; 9:23303-23315. [PMID: 38854582 PMCID: PMC11154899 DOI: 10.1021/acsomega.3c09871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 06/11/2024]
Abstract
This study addressed the limited antibacterial durability of textile materials, which has suppressed their applications in preventing infectious disease transmission. A class of highly durable antibacterial textiles was developed by incorporating protonated polyaniline (PANI) textile with poly(acrylic acid) (PAA) as the functional binder via cross-linking polymerization. The resulting PAA-PANI textile exhibits exceptional electrical conductivity, reaching 8.33 ± 0.04 × 10-3 S/cm when cross-linked with 30% PAA. Remarkably, this textile maintains its electrical stability at 10-3 S/cm even after 50 washing cycles, demonstrating unparalleled durability. Furthermore, the PANI-PAA textile showcases remarkable antibacterial efficacy, with 95.48% efficiency against Pseudomonas aeruginosa and 92.35% efficiency against Staphylococcus aureus bacteria, even after 50 washing cycles. Comparatively, the PAA-PANI textile outperforms its PANI counterpart by achieving an astounding 80% scavenging activity rate, whereas the latter only displayed a rate of 3.22%. This result suggests a solid integration of PAA-PANI into the textile, leading to sustainable antioxidant release. The successful cross-linking of PAA-PANI in textiles holds significant implications for various industries, offering a foundation for the development of wearable textiles with unprecedented antibacterial durability and electrical stability. This breakthrough opens new avenues for combating infectious diseases and enhancing the performance of wearable technologies.
Collapse
Affiliation(s)
- Muhammad Faiz Aizamddin
- Group
Research and Technology, PETRONAS Research
Sdn. Bhd., Bandar Baru Bangi, 43000 Selangor, Malaysia
- School
of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Zaidah Zainal Ariffin
- School
of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah
Alam 40450, Malaysia
| | - Nur Asyura Nor Amdan
- Bacteriology
Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam 40170, Malaysia
| | - Mohd Azizi Nawawi
- School
of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Nur Aimi Jani
- School
of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Muhd Fauzi Safian
- School
of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Siti Nur Amira Shaffee
- Group
Research and Technology, PETRONAS Research
Sdn. Bhd., Bandar Baru Bangi, 43000 Selangor, Malaysia
| | | | - Maung Maung Myo Thant
- Group
Research and Technology, PETRONAS Research
Sdn. Bhd., Bandar Baru Bangi, 43000 Selangor, Malaysia
| | - Mohd Muzamir Mahat
- School
of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
- Textile Research
Group, Faculty of Applied Sciences, Universiti
Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
3
|
Yari-Ilkhchi A, Mahkam M, Ebrahimi-Kalan A, Zangbar HS. Design and synthesis of nano-biomaterials based on graphene and local delivery of cerebrolysin into the injured spinal cord of mice, promising neural restoration. NANOSCALE ADVANCES 2024; 6:990-1000. [PMID: 38298594 PMCID: PMC10825937 DOI: 10.1039/d3na00760j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Spinal cord injury (SCI) is an incurable and catastrophic health issue with no clinical solution. As part of cascade reactions, the inflammatory process and fibrous glial scar production aggravate the amount of lesion through a secondary damage mechanism, encouraging scientists from other disciplines to investigate new paths for solving this problem. Graphene oxide (GO) and its derivatives are among the most promising biomedical and nerve tissue regeneration materials due to their remarkable chemical, mechanical, and electrical properties. This paper designs and introduces a new GO-based nanomaterial to minimize inflammation and stimulate neurite regrowth. To improve biocompatibility, biodegradability, and cell proliferation, GO plates were modified with polyethylene glycol (PEG) and Au nanoparticles as neuroprotective and antibacterial agents, respectively. Preliminary biological investigations on bone marrow derived mesenchymal stem cells (BM-MSCs) with various concentrations of a graphenic nanocarrier indicated a lack of cell toxicity and an enhancement in BM-MSC proliferation of about 10% after 48 hours. Therapeutic nanostructures were used in the T10 segment of a mouse SCI model. The pathological and immunohistochemical data revealed that refilling tissue cavities, decreasing degeneration, and establishing neuroregeneration resulted in a considerable improvement of hind limb motor function. Furthermore, compared to the nanocomposite mixture alone, the intraspinal delivery of cerebrolysin (CRL) had a more satisfying impact on nerve regrowth, cystic cavity, hemorrhage avoidance, and motor function enhancement. This study demonstrates the potential of graphenic nanomaterials for SCI treatment and neuroregeneration applications.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran 5375171379
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran 5375171379
| | - Abbas Ebrahimi-Kalan
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Soltani Zangbar
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|