1
|
Bakare A, Mohanadas HP, Tucker N, Ahmed W, Manikandan A, Faudzi AAM, Mohamaddan S, Jaganathan SK. Advancements in textile techniques for cardiovascular tissue replacement and repair. APL Bioeng 2024; 8:041503. [PMID: 39431050 PMCID: PMC11488978 DOI: 10.1063/5.0231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
In cardiovascular therapeutics, procedures such as heart transplants and coronary artery bypass graft are pivotal. However, an acute shortage of organ donors increases waiting times of patients, which is reflected in negative effects on the outcome for the patient. Post-procedural complications such as thrombotic events and atherosclerotic developments may also have grave clinical implications. To address these challenges, tissue engineering is emerging as a solution, using textile technologies to synthesize biomimetic scaffolds resembling natural tissues. This comprehensive analysis explains methodologies including electrospinning, electrostatic flocking, and advanced textile techniques developed from weaving, knitting, and braiding. These techniques are evaluated in the context of fabricating cardiac patches, vascular graft constructs, stent designs, and state-of-the-art wearable sensors. We also closely examine the interaction of distinct process parameters with the biomechanical and morphological attributes of the resultant scaffolds. The research concludes by combining current findings and recommendations for subsequent investigation.
Collapse
Affiliation(s)
- Abiola Bakare
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | | | - Nick Tucker
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - A. Manikandan
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shahrol Mohamaddan
- Innovative Global Program College of Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
2
|
De S, Ghosh A, Mandal D, Sarkar K, Samanta AP, Basak M, Saha A, Bhattacharya D, Nandi S, Sarkar J, Mandal M, Acharya K, Ghosh P, Chattopadhyay D. Lysine-Mediated Yttrium Oxide Nanoparticle-Incorporated Nanofibrous Scaffolds with Tunable Cell Adhesion, Proliferation, and Antimicrobial Potency for In Vitro Wound-Healing Applications. ACS APPLIED BIO MATERIALS 2024; 7:6414-6429. [PMID: 39287553 DOI: 10.1021/acsabm.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The intricate healing mechanism of chronic wounds and their multitude of healing-related obstacles, such as infections, compromised cellular processes, and impediments to the healing process, pose a significant healthcare problem. Exploration of metal oxide nanoparticles, such as yttrium oxide (Y2O3) nanoparticles, can lead to innovative discoveries in the field of chronic wound healing by offering cues that promote cell proliferation in the scaffolds. To achieve this, Y2O3 nanoparticles were synthesized and incorporated within poly(vinyl alcohol) (PVA) nanofibrous scaffolds. Moreover, lysine was infused in the nanofibrous scaffolds to tune its cell adhesion and antimicrobial property. The structure and morphology of the synthesized nanofibers were confirmed through various physicochemical characterizations. Notably, all the fabricated scaffolds have remarkably tuned WVTR values within the range of 2000-2500 g/m2/day, favorable for removing the wound exudate, which facilitate the healing process. The scaffolds exhibited substantial antimicrobial property of approximately 68% and 72.2% against both E. coli and S. aureus at optimized Y2O3 loading. They further prevented the formation of biofilm by 68.6% for S. aureus and 51.2% for P. aeruginosa, suggesting the inhibition of recurrent wound infection. The scaffolds illustrated good blood biocompatibility, cytocompatibility, and cell adhesion capabilities. In vitro ROS inhibition study also corroborated the antioxidant property of the scaffold. Similarly, the wound scratching experiment showed high proliferative capability of a yttria-loaded PVA/lysine (S3) sample through the development of an extracellular matrix support. Molecular insight of wound healing was also validated through flow cytometry analysis and immunocytochemistry imaging studies. The findings revealed increased collagen I (Col-I) expression of approximately 19.48% in cultured fibrocytes. The findings are validated from immunocytochemistry imaging. In summary, the results furnish a captivating paradigm for the use of these scaffolds as a therapeutic biomaterial and to foster their potential efficacy toward wound care management.
Collapse
Affiliation(s)
- Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal 700125, India
| | - Adrija Ghosh
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Debashmita Mandal
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Arpita Priyadarshini Samanta
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Madhurima Basak
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal 700125, India
| | - Abhisek Saha
- Dept. of Clinical Immunology and Rheumatology, SSKM Hospital, Kolkata, West Bengal 700020, India
| | - Dipanjan Bhattacharya
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal 700125, India
| | - Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jit Sarkar
- Department of Botany, Molecular & Applied Mycology & Plant Pathology Laboratory, University of Calcutta, Kolkata, West Bengal 700 019, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Krishnendu Acharya
- Department of Botany, Molecular & Applied Mycology & Plant Pathology Laboratory, University of Calcutta, Kolkata, West Bengal 700 019, India
| | - Parasar Ghosh
- Dept. of Clinical Immunology and Rheumatology, SSKM Hospital, Kolkata, West Bengal 700020, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
3
|
Wei S, Zhang Y, Luo F, Duan K, Li M, Lv G. Tissue-engineered tracheal implants: Advancements, challenges, and clinical considerations. Bioeng Transl Med 2024; 9:e10671. [PMID: 39036086 PMCID: PMC11256149 DOI: 10.1002/btm2.10671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024] Open
Abstract
Restoration of extensive tracheal damage remains a significant challenge in respiratory medicine, particularly in instances stemming from conditions like infection, congenital anomalies, or stenosis. The trachea, an essential element of the lower respiratory tract, constitutes a fibrocartilaginous tube spanning approximately 10-12 cm in length. It is characterized by 18 ± 2 tracheal cartilages distributed anterolaterally with the dynamic trachealis muscle located posteriorly. While tracheotomy is a common approach for patients with short-length defects, situations requiring replacement arise when the extent of lesion exceeds 1/2 of the length in adults (or 1/3 in children). Tissue engineering (TE) holds promise in developing biocompatible airway grafts for addressing challenges in tracheal regeneration. Despite the potential, the extensive clinical application of tissue-engineered tracheal substitutes encounters obstacles, including insufficient revascularization, inadequate re-epithelialization, suboptimal mechanical properties, and insufficient durability. These limitations have led to limited success in implementing tissue-engineered tracheal implants in clinical settings. This review provides a comprehensive exploration of historical attempts and lessons learned in the field of tracheal TE, contextualizing the clinical prerequisites and vital criteria for effective tracheal grafts. The manufacturing approaches employed in TE, along with the clinical application of both tissue-engineered and non-tissue-engineered approaches for tracheal reconstruction, are discussed in detail. By offering a holistic view on TE substitutes and their implications for the clinical management of long-segment tracheal lesions, this review aims to contribute to the understanding and advancement of strategies in this critical area of respiratory medicine.
Collapse
Affiliation(s)
- Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Yiyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Feixiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Kexing Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Qu Z, Yue J, Song N, Li S. Innovations in 3D printed individualized bone prosthesis materials: revolutionizing orthopedic surgery: a review. Int J Surg 2024; 110:01279778-990000000-01706. [PMID: 38905508 PMCID: PMC11486933 DOI: 10.1097/js9.0000000000001842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The advent of personalized bone prosthesis materials and their integration into orthopedic surgery has made a profound impact, primarily as a result of the incorporation of three-dimensional (3D) printing technology. By leveraging digital models and additive manufacturing techniques, 3D printing enables the creation of customized, high-precision bone implants tailored to address complex anatomical variabilities and challenging bone defects. In this review, we highlight the significant progress in utilizing 3D printed prostheses across a wide range of orthopedic procedures, including pelvis, hip, knee, foot, ankle, spine surgeries, and bone tumor resections. The integration of 3D printing in preoperative planning, surgical navigation, and postoperative rehabilitation not only enhances treatment outcomes but also reduces surgical risks, accelerates recovery, and optimizes cost-effectiveness. Emphasizing the potential for personalized care and improved patient outcomes, this review underscores the pivotal role of 3D printed bone prosthesis materials in advancing orthopedic practice towards precision, efficiency, and patient-centric solutions. The evolving landscape of 3D printing in orthopedic surgery holds promise for revolutionizing treatment approaches, enhancing surgical outcomes, and ultimately improving the quality of care for orthopedic patients.
Collapse
Affiliation(s)
- Zhigang Qu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong
| | - Ning Song
- Operating Theatre, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine With Engineering, Shenyang, Liaoning
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, China
| |
Collapse
|
5
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2024:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
6
|
Ruchika, Bhardwaj N, Yadav SK, Saneja A. Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies. Drug Discov Today 2024; 29:103924. [PMID: 38401878 DOI: 10.1016/j.drudis.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.
Collapse
Affiliation(s)
- Ruchika
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Bhardwaj
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Dinatha IKH, Diputra AH, Wihadmadyatami H, Partini J, Yusuf Y. Nanofibrous electrospun scaffold doped with hydroxyapatite derived from sand lobster shell ( Panulirus homarus) for bone tissue engineering. RSC Adv 2024; 14:8222-8239. [PMID: 38469192 PMCID: PMC10925909 DOI: 10.1039/d4ra00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Healing of significant segmental bone defects remains a challenge, and various studies attempt to make materials that mimic bone structures and have biocompatibility, bioactivity, biodegradability, and osteoconductivity to native bone tissues. In this work, a nanofiber scaffold membrane of polyvinyl alcohol (PVA)/polyvinylpyrrolidone (PVP)/chitosan (CS) combined with hydroxyapatite (HAp) from sand lobster (SL; Panulirus homarus) shells, as a calcium source, was successfully synthesized to mimic the nanoscale extracellular matrix (ECM) in the native bone. The HAp from SL shells was synthesized by co-precipitation method with Ca/P of 1.67 and incorporated into the nanofiber membrane PVA/PVP/CS synthesized by the electrospinning method with varying concentrations, i.e. 0, 1, 3, and 5% (w/v). Based on the morphological and physicochemical analysis, the addition of HAp into the nanofiber successfully showed incorporation into the nanofiber with small agglomeration at HAp concentrations of 1, 3, and 5% (w/v). This led to a smaller fiber diameter with higher concentration of Hap, and incorporating HAp into the nanofiber could improve the mechanical properties of the nanofiber closer to the trabecula bone. Moreover, in general, swelling due to water absorption increases due to higher hydrophilicity at higher HAp concentrations and leads to the improvement of the degradation process and protein adsorption of the nanofiber. Biomineralization in a simulated body fluid (SBF) solution confirms that the HAp in the nanofiber increases bioactivity, and it can be seen that more apatite is formed during longer immersion in the SBF solution. The nanofiber PVA/PVP/CS HAp 5% has the most potential for osteoblast (MC3T3E1) cell viability after being incubated for 24 h, and it allowed the cell to attach and proliferate. Additionally, the higher HAp concentration in the nanofiber scaffold membrane can significantly promote the osteogenic differentiation of MC3T3E1 cells. Overall, the PVA/PVP/CS/HAp 5% nanofiber scaffold membrane has the most potential for bone tissue engineering.
Collapse
Affiliation(s)
- I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Arian H Diputra
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Juliasih Partini
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| |
Collapse
|
8
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
9
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
10
|
Handa M, Sanap SN, Bhatta RS, Patil GP, Ghose S, Singh DP, Shukla R. Combining donepezil and memantine via mannosylated PLGA nanoparticles for intranasal delivery: Characterization and preclinical studies. BIOMATERIALS ADVANCES 2023; 154:213663. [PMID: 37865027 DOI: 10.1016/j.bioadv.2023.213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The current work is focused on developing mannose-coated PLGA nanoparticles for delivering Donepezil and Memantine in one dosage form. The formulated nanoparticles were prepared using a simple emulsification technique. The final coated NPs exhibited 179.4 nm size and - 33.1 mV zeta potential and spherical shape. The concentration of IN-administrated MEM and DPZ mannose coated NPs in brain was ~573 and 207 ng/mL respectively. This amount accounts for 3 times more in comparison to uncoated NPs administered via intranasal and peroral routes. The plasma concentration of coated NPs administered via the intranasal route was various times less in comparison to other groups. In the field of pharmacodynamics, the administration of coated NPs via the IN route has shown superior efficacy in comparison to other groups in various investigations involving neurobehavioral assessments, gene expression analyses and biochemical estimations. The findings indicate that the IN route may be a potential avenue for delivering therapeutic agents using nanoparticles to treat neurological illnesses. This approach shows promise as a viable alternative to traditional dose forms and administration methods.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Gajanan Pratap Patil
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Suchetana Ghose
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Dhirendra Pratap Singh
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
11
|
Temane LT, Orasugh JT, Ray SS. Recent Advances and Outlook in 2D Nanomaterial-Based Flame-Retardant PLA Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6046. [PMID: 37687739 PMCID: PMC10488405 DOI: 10.3390/ma16176046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Poly (lactic acid) or polylactide (PLA) has gained widespread use in many industries and has become a commodity polymer. Its potential as a perfect replacement for petrochemically made plastics has been constrained by its extreme flammability and propensity to flow in a fire. Traditional flame-retardants (FRs), such as organo-halogen chemicals, can be added to PLA without significantly affecting the material's mechanical properties. However, the restricted usage of these substances causes them to bioaccumulate and endanger plants and animals. Research on PLA flame-retardants has mostly concentrated on organic and inorganic substances for the past few years. Meanwhile, there has been a significant increase in renewed interest in creating environmentally acceptable flame-retardants for PLA to maintain the integrity of the polymer, which is the current trend. This article reviews recent advancements in novel FRs for PLA. The emphasis is on two-dimensional (2D) nanosystems and the composites made from them that have been used to develop PLA nanocomposite (NCP) systems that are flame retarding. The association between FR loadings and efficiency for different FR-PLA systems is also briefly discussed in the paper, as well as their influence on processing and other material attributes. It is unmistakably established from the literature that adding 2D nanoparticles to PLA matrix systems reduces their flammability by forming an intumescent char/carbonized surface layer. This creates a barrier effect that successfully blocks the filtration of volatiles and oxygen, heat and mass transfer, and the release of combustible gases produced during combustion.
Collapse
Affiliation(s)
- Lesego Tabea Temane
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; (L.T.T.); (J.T.O.)
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; (L.T.T.); (J.T.O.)
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; (L.T.T.); (J.T.O.)
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|