1
|
Arivazhagan M, Pavadai R, Murugan N, Jakmunee J. Surface engineered metal-organic framework-based electrochemical biosensors for enzyme-mimic ultrasensitive detection of glucose: recent advancements and future perspectives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6474-6486. [PMID: 39246227 DOI: 10.1039/d4ay01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Metal-Organic Frameworks (MOFs) have garnered significant attention in the development of electrochemical glucose sensors due to their unique and advantageous properties. The highly tunable pore channels of MOFs facilitate optimal diffusion of glucose molecules, while their large specific surface area provides abundant active sites for electrochemical reactions. Furthermore, the well-dispersed metallic active sites within MOFs enhance electrocatalytic activity, thereby improving the sensitivity and selectivity of glucose detection. These features make MOF-based nanoarchitectures promising candidates for the development of efficient and sensitive glucose sensors, which are crucial for diabetes management and monitoring. The integration of enzymatic biosensors with nanotechnology continues to drive advancements in glucose monitoring, offering the potential for more accurate, convenient, and user-friendly tools for diabetes management. Current research explores non-invasive glucose monitoring methods, such as using sweat, saliva, or interstitial fluid instead of blood, aiming to reduce the discomfort and inconvenience associated with frequent blood sampling. A review of the advancements and applications of MOF-based enzyme-mimic electrochemical sensors for glucose monitoring can provide valuable insights for young researchers, inspiring future research in biomedical device fabrication. Such reviews not only offer a comprehensive understanding of the current state of the art but also highlight existing challenges and future opportunities in the field of enzyme-less glucose sensing, particularly in the surface modification techniques of highly porous MOFs. This fosters innovation and new research directions. By understanding the advantages, challenges, and opportunities, researchers can contribute to the development of more effective and innovative enzyme-mimic glucose sensing transducers, which are essential for advancing biomedical devices.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Rajaji Pavadai
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nagaraj Murugan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
- Department of Polymer Engineering and Graduate School, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Ahmed KH, Mohamedi M. Microfibrous Carbon Paper Decorated with High-Density Manganese Dioxide Nanorods: An Electrochemical Nonenzymatic Platform of Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:5864. [PMID: 39338610 PMCID: PMC11435572 DOI: 10.3390/s24185864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Nanorod structures exhibit a high surface-to-volume ratio, enhancing the accessibility of electrolyte ions to the electrode surface and providing an abundance of active sites for improved electrochemical sensing performance. In this study, tetragonal α-MnO2 with a large K+-embedded tunnel structure, directly grown on microfibrous carbon paper to form densely packed nanorod arrays, is investigated as an electrocatalytic material for non-enzymatic glucose sensing. The MnO2 nanorods electrode demonstrates outstanding catalytic activity for glucose oxidation, showcasing a high sensitivity of 143.82 µA cm-2 mM-1 within the linear range from 0.01 to 15 mM, with a limit of detection (LOD) of 0.282 mM specifically for glucose molecules. Importantly, the MnO2 nanorods electrode exhibits excellent selectivity towards glucose over ascorbic acid and uric acid, which is crucial for accurate glucose detection in complex samples. For comparison, a gold electrode shows a lower sensitivity of 52.48 µA cm-2 mM-1 within a linear range from 1 to 10 mM. These findings underscore the superior performance of the MnO2 nanorods electrode in both sensitivity and selectivity, offering significant potential for advancing electrochemical sensors and bioanalytical techniques for glucose monitoring in physiological and clinical settings.
Collapse
Affiliation(s)
- Khawtar Hasan Ahmed
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Mohamed Mohamedi
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
3
|
Ren T, Yan L, Zhao Y. Acetate-assisted in situ electrodeposited β-MnO 2 for the fabrication of nano-architectonics for non-enzymatic glucose detection. RSC Adv 2024; 14:22359-22367. [PMID: 39010910 PMCID: PMC11247433 DOI: 10.1039/d4ra03930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Highly sensitive and low-cost electrocatalytic materials are of great importance for the commercial application of non-enzymatic glucose sensors. Herein, we fabricated a novel one-pot enzyme- and indicator-free method for the colorimetric sensing of blood glucose levels based on the direct redox reaction of β-MnO2/glucose. Owing to the introduction of ammonium acetate and the enhanced oxygen evolution reaction, the higher conductive β-MnO2 nanosheets with the larger surface area were directly grown in situ on the conductive substrate by a linear sweep voltammetry (LSV) electrodeposition method. Besides, owing to the unique tunnel-type pyrolusite MnO2, the electrolyte diffusion was facilitated and reduced the response time in the glucose detection process. Hence, the acetate-assisted MnO2 electrode exhibited a high sensitivity of 461.87 μA M-1 cm-2 toward glucose, a wide detection range from 1.0 μM to 1 mM, and a low detection limit of 0.47 μM while the electrode also maintained excellent selectivity and stability. These results clearly indicate that the new strategy we developed has great potential for practical applications.
Collapse
Affiliation(s)
- Tianbao Ren
- School of Business, Heze University Heze 274015
| | - Lijun Yan
- Department of Interior and Environmental Design, Pusan National University Pusan 46241 South Korea
| | - Yang Zhao
- Department of Urban and Regional Development, Hanyang University Seoul 04763 South Korea
| |
Collapse
|
4
|
Liu J, Dong Z, Huan K, He Z, Zhang Q, Deng D, Luo L. Application of the Electrospinning Technique in Electrochemical Biosensors: An Overview. Molecules 2024; 29:2769. [PMID: 38930834 PMCID: PMC11206051 DOI: 10.3390/molecules29122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Electrospinning is a cost-effective and flexible technology for producing nanofibers with large specific surface areas, functionalized surfaces, and stable structures. In recent years, electrospun nanofibers have attracted more and more attention in electrochemical biosensors due to their excellent morphological and structural properties. This review outlines the principle of electrospinning technology. The strategies of producing nanofibers with different diameters, morphologies, and structures are discussed to understand the regulation rules of nanofiber morphology and structure. The application of electrospun nanofibers in electrochemical biosensors is reviewed in detail. In addition, we look towards the future prospects of electrospinning technology and the challenge of scale production.
Collapse
Affiliation(s)
- Jie Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
| | - Zhong Dong
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Ke Huan
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Zhangchu He
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| |
Collapse
|
5
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
6
|
Selvi Gopal T, James JT, Gunaseelan B, Ramesh K, Raghavan V, Malathi A CJ, Amarnath K, Kumar VG, Rajasekaran SJ, Pandiaraj S, MR M, Pitchaimuthu S, Abeykoon C, Alodhayb AN, Grace AN. MXene-Embedded Porous Carbon-Based Cu 2O Nanocomposites for Non-Enzymatic Glucose Sensors. ACS OMEGA 2024; 9:8448-8456. [PMID: 38405472 PMCID: PMC10882672 DOI: 10.1021/acsomega.3c09659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
This work explores the use of MXene-embedded porous carbon-based Cu2O nanocomposite (Cu2O/M/AC) as a sensing material for the electrochemical sensing of glucose. The composite was prepared using the coprecipitation method and further analyzed for its morphological and structural characteristics. The highly porous scaffold of activated (porous) carbon facilitated the incorporation of MXene and copper oxide inside the pores and also acted as a medium for charge transfer. In the Cu2O/M/AC composite, MXene and Cu2O influence the sensing parameters, which were confirmed using electrochemical techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and amperometric analysis. The prepared composite shows two sets of linear ranges for glucose with a limit of detection (LOD) of 1.96 μM. The linear range was found to be 0.004 to 13.3 mM and 15.3 to 28.4 mM, with sensitivity values of 430.3 and 240.5 μA mM-1 cm-2, respectively. These materials suggest that the prepared Cu2O/M/AC nanocomposite can be utilized as a sensing material for non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Tami Selvi Gopal
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore, Tamil Nadu 632014, India
| | - Jaimson T. James
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore, Tamil Nadu 632014, India
| | - Bharath Gunaseelan
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore, Tamil Nadu 632014, India
| | - Karthikeyan Ramesh
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore, Tamil Nadu 632014, India
| | - Vimala Raghavan
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore, Tamil Nadu 632014, India
| | - Christina Josephine Malathi A
- Department
of Communication Engineering, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - K. Amarnath
- Department
of Chemistry and Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - V. Ganesh Kumar
- Department
of Chemistry and Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | | | - Saravanan Pandiaraj
- Department
of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Sudhagar Pitchaimuthu
- Research
Centre for Carbon Solutions, Institute of Mechanical, Processing and
Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Chamil Abeykoon
- Northwest
Composites Centre, Aerospace Research Institute, and Department of
Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Abdullah N. Alodhayb
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andrews Nirmala Grace
- Centre
for Nanotechnology Research, Vellore Institute
of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|