1
|
Combination of dl922-947 Oncolytic Adenovirus and G-Quadruplex Binders Uncovers Improved Antitumor Activity in Breast Cancer. Cells 2022; 11:cells11162482. [PMID: 36010559 PMCID: PMC9406944 DOI: 10.3390/cells11162482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
G-quadruplexes (G4s) are nucleic secondary structures characterized by G-tetrads. G4 motif stabilization induces DNA damage and cancer cell death; therefore, G4-targeting small molecules are the focus of clinical investigation. DNA destabilization induced by G4 ligands might potentiate the anticancer activity of agents targeting DNA or inhibiting its repair such as oncolytic viruses. This study represents the first approach combining G4 ligands, BRACO-19 (B19), pyridostatin (PDS), and the adenovirus dl922-947 in breast cancer cells. We demonstrated that G4 binders and dl922-947 induce cytotoxicity in breast cancer cells (MDA-MB-231 and MCF-7) and at higher doses in other neoplastic cell lines of thyroid (BHT-101 cells) and prostate (PC3 cells). G4 binders induce G4 motifs distributed in the S and G2/M phases in MCF-7 cells. G4 binder/dl922-947 combination increases cell cytotoxicity and the accumulation in subG0/G1. Indeed, G4 binders favor viral entry and replication with no effect on coxsackie and adenovirus receptor. Notably, dl922-947 induces G4 motifs and its combination with PDS potentiates this effect in MCF-7 cells. The agents alone or in combination similarly enhanced cell senescence. Additionally, PDS/dl922-947 combination inactivates STING signaling in MDA-MB-231 cells. Our results suggest that G4 binder/virotherapy combination may represent a novel therapeutic anticancer approach.
Collapse
|
2
|
Grün JT, Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers 2021; 113:e23477. [PMID: 34664713 DOI: 10.1002/bip.23477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence.
Collapse
Affiliation(s)
- J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt/M, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/M, Germany
| |
Collapse
|
3
|
Zhao X, Liu Y, Chen X, Mi Z, Li W, Wang P, Shan X, Lu X. Detection and Characterization of Single Cisplatin Adducts on DNA by Nanopore Sequencing. ACS OMEGA 2021; 6:17027-17034. [PMID: 34250360 PMCID: PMC8264939 DOI: 10.1021/acsomega.1c02106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
Detection and characterization of an individual cisplatin adduct on a single DNA molecule is a demanding task. We explore the characteristic features of cisplatin adducts in the nanopore sequencing signal in aspects of dwell time, genome anchored current trace, and basecalling accuracy. The offset between the motor protein and the nanopore constriction region is revealed by dwell time analysis to be about 14 bases in the nanopore device as we examined. Characteristic distortions due to cisplatin adducts are illustrated in genome anchored current trace analysis, constituting the fingerprint for identification of cisplatin adduct. The sharp increase in odds ratio at the location of adducting sites provides additional feature in the detection of the adduct. By these combined methods, single cisplatin adducts can be detected with high fidelity on a single read of the DNA sequence. The study demonstrates an effective method in the detection and characterization of single cisplatin adducts on DNA at the single-molecule level and with single nucleotide spatial resolution.
Collapse
Affiliation(s)
- Xinjia Zhao
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
| | - Yuru Liu
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Chen
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
| | - Zhuang Mi
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
| | - Wei Li
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengye Wang
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
- Songshan
Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xinyan Shan
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghua Lu
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
- Center
for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
- Songshan
Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
4
|
Alessandrini I, Recagni M, Zaffaroni N, Folini M. On the Road to Fight Cancer: The Potential of G-quadruplex Ligands as Novel Therapeutic Agents. Int J Mol Sci 2021; 22:5947. [PMID: 34073075 PMCID: PMC8198608 DOI: 10.3390/ijms22115947] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nucleic acid sequences able to adopt a G-quadruplex conformation are overrepresented within the human genome. This evidence strongly suggests that these genomic regions have been evolutionary selected to play a pivotal role in several aspects of cell biology. In the present review article, we provide an overview on the biological impact of targeting G-quadruplexes in cancer. A variety of small molecules showing good G-quadruplex stabilizing properties has been reported to exert an antitumor activity in several preclinical models of human cancers. Moreover, promiscuous binders and multiple targeting G-quadruplex ligands, cancer cell defense responses and synthetic lethal interactions of G-quadruplex targeting have been also highlighted. Overall, evidence gathered thus far indicates that targeting G-quadruplex may represent an innovative and fascinating therapeutic approach for cancer. The continued methodological improvements, the development of specific tools and a careful consideration of the experimental settings in living systems will be useful to deepen our knowledge of G-quadruplex biology in cancer, to better define their role as therapeutic targets and to help design and develop novel and reliable G-quadruplex-based anticancer strategies.
Collapse
Affiliation(s)
| | | | | | - Marco Folini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (M.R.); (N.Z.)
| |
Collapse
|
5
|
Amjadi Oskouie A, Abiri A. Refining our methodologies for assessing quadruplex DNA ligands; selectivity or an illusion of selectivity? Anal Biochem 2020; 613:113744. [PMID: 32325085 DOI: 10.1016/j.ab.2020.113744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Regulation of transcription and replication by the tetrad patterns of DNA has drawn the attention of many scientists. In this perspective article, we discuss some disparaged parameters in the study of G-quadruplex structures (G4-tetrads). Besides, the implication of "destabilization as a side-effect" by these ligands on quadruplexes is explained. The lack of strict control of in vitro cell-free experiments in terms of ionic concentration, pH, epigenetic modifications, (macro)molecular crowding, and solvent effects is evident in many previous studies. The role of these factors in ligands binding and their possible effects in G-quadruplex structures are also represented.
Collapse
Affiliation(s)
- Akbar Amjadi Oskouie
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Kinetics, conformation, stability, and targeting of G-quadruplexes from a physiological perspective. Biochem Biophys Res Commun 2020; 531:84-87. [PMID: 32331835 DOI: 10.1016/j.bbrc.2020.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023]
Abstract
The particular enrichment of G-quadruplex-forming sequences near transcription start sites signifies the involvement of G-quadruplexes in the regulation of transcription. The characterization of G-quadruplex formation, which holds the key to understand the function it plays in physiological and pathological processes, is mostly performed under simplified in vitro experimental conditions. Formation of G-quadruplexes in cells, however, occurs in an environment far different from the ones in which the in vitro studies on G-quadruplexes are normally carried out. Therefore, the characteristics of G-quadruplex structures obtained under the in vitro conditions may not faithfully reveal how the G-quadruplexes would behave in a physiologically relevant situation. In this mini-review, we attempt to briefly summarize the differences in a few important characteristics, including kinetics, conformation, and stability of G-quadruplex formation observed under the two conditions to illustrate how the intracellular environment might affect the behavior of G-quadruplexes largely based on the previous work carried out in the authors' laboratory. We also propose that unstable G-quadruplex variants may be better drug target candidates to improve selectivity and potency.
Collapse
|
7
|
Effects of monovalent cations on folding kinetics of G-quadruplexes. Biosci Rep 2017; 37:BSR20170771. [PMID: 28588052 PMCID: PMC5567087 DOI: 10.1042/bsr20170771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/29/2023] Open
Abstract
G-quadruplexes are special structures existing at the ends of human telomeres,
the folding kinetics of which are essential for their functions, such as in the
maintenance of genome stability and the protection of chromosome ends. In the
present study, we investigated the folding kinetics of G-quadruplex in different
monovalent cation environments and determined the detailed kinetic parameters
for Na+- and K+-induced G-quadruplex folding, and for its
structural transition from the basket-type Na+ form to the
hybrid-type K+ form. More interestingly, although Li+ was
often used in previous studies of G-quadruplex folding as a control ion supposed
to have no effect, we have found that Li+ can actually influence the
folding kinetics of both Na+- and K+-induced
G-quadruplexes significantly and in different ways, by changing the folding
fraction of Na+-induced G-quadruplexes and greatly increasing the
folding rates of K+-induced G-quadruplexes. The present study may
shed new light on the roles of monovalent cations in G-quadruplex folding and
should be useful for further studies of the underlying folding mechanism.
Collapse
|
8
|
Xu H, Plaut B, Zhu X, Chen M, Mavinkurve U, Maiti A, Song G, Murari K, Mandal M. Direct Observation of Folding Energy Landscape of RNA Hairpin at Mechanical Loading Rates. J Phys Chem B 2017; 121:2220-2229. [PMID: 28248503 DOI: 10.1021/acs.jpcb.6b10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By applying a controlled mechanical load using optical tweezers, we measured the diffusive barrier crossing in a 49 nt long P5ab RNA hairpin. We find that in the free-energy landscape the barrier height (G‡) and transition distance (x‡) are dependent on the loading rate (r) along the pulling direction, x, as predicted by Bell. The barrier shifted toward the initial state, whereas ΔG‡ reduced significantly from 50 to 5 kT, as r increased from 0 to 32 pN/s. However, the equilibrium work (ΔG) during strand separation, as estimated by Crook's fluctuation theorem, remained unchanged at different rates. Previously, helix formation and denaturation have been described as two-state (F ↔ U) transitions for P5ab. Herein, we report three intermediate states I1, I, and I2 located at 4, 11, and 16 nm respectively, from the folded conformation. The intermediates were observed only when the hairpin was subjected to an optimal r, 7.6 pN/s. The results indicate that the complementary strands in P5ab can zip and unzip through complex routes, whereby mismatches act as checkpoints and often impose barriers. The study highlights the significance of loading rates in force-spectroscopy experiments that are increasingly being used to measure the folding properties of biomolecules.
Collapse
Affiliation(s)
- Huizhong Xu
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Benjamin Plaut
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Xiran Zhu
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Maverick Chen
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Udit Mavinkurve
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Anindita Maiti
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Guangtao Song
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Krishna Murari
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Maumita Mandal
- Department of Physics, ‡Department of Mathematical Sciences, §Department of Computer Science, and ∥Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|