1
|
Thombare N, Kumar S, Kumari U, Sakare P, Yogi RK, Prasad N, Sharma KK. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int J Biol Macromol 2022; 215:203-223. [PMID: 35718149 DOI: 10.1016/j.ijbiomac.2022.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Shellac is a physically refined form of lac resin, a natural biopolymer of animal origin obtained from tiny insects feeding on the sap of specific host trees. Shellac, in its basic form, is a polyester macromolecule composed of inter and intra esters of polyhydroxy aliphatic and sesquiterpene acids. It has been used in several industries for ages due to its exceptional properties such as film-forming, adhering, bonding, thermoplasticity, water-resistance and easy solubility in spirit and aqueous alkali solvents. From the beginning of the 21st century, due to increasing demand for natural products, a paradigm shift in the scope and applications of shellac has been witnessed, especially in green electronics, 3D printing, stealth technology, intelligent sensors, food and pharmaceutical industries. Shellac offers enormous potential for greener technologies as a natural and environmentally friendly material. This review provides an insight into the lac in detail, covering various forms of the lac, structure, properties, different applications of shellac and its future potential. This article would benefit the researchers involved in shellac research and others looking for natural and greener alternatives to synthetic polymers in various applications.
Collapse
Affiliation(s)
- Nandkishore Thombare
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India.
| | - Saurav Kumar
- CSIR - Central Scientific Instruments Organisation, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Usha Kumari
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Priyanka Sakare
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Raj Kumar Yogi
- ICAR - Directorate of Rapeseed Mustard Research, Bharatpur 321303, Rajasthan, India
| | - Niranjan Prasad
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Kewal Krishan Sharma
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| |
Collapse
|
2
|
Shi Y, Liu J, Hu Y, Hu W, Jiang L. Effect of contact resistance in organic field‐effect transistors. NANO SELECT 2021. [DOI: 10.1002/nano.202000059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Yanjun Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Yuanyuan Hu
- Key Laboratory for Micro‐Nano Optoelectronic Devices of Ministry of Education School of Physics and Electronics Hunan University Changsha China
| | - Wenping Hu
- College of Science Tianjin University Tianjin China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing China
| |
Collapse
|
3
|
Superhydrophobic Coating Derived from Geothermal Silica to Enhance Material Durability of Bamboo Using Hexadimethylsilazane (HMDS) and Trimethylchlorosilane (TMCS). MATERIALS 2021; 14:ma14030530. [PMID: 33499183 PMCID: PMC7865611 DOI: 10.3390/ma14030530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022]
Abstract
Bamboo, a fast-growing plant from Asia, is used as building material with unique properties, while exhibiting fast degradation due to its hydrophobicity. Therefore, many attempts have been implemented using several technologies for bamboo modification to alter the hydrophobicity. Most previous studies producing superhydrophobic properties are conducted by using tetraethoxysilane (TEOS) as a precursor agent. However, this method, using TEOS with harmful properties and unaffordable compounds, requires many steps to accomplish the experimental method. Therefore, this paper employed geothermal solid waste as a silica source of the precursor. Thus, an effective and efficient method was applied to prepare superhydrophobic coating by using a precursor of geothermal silica and further modification using hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The research was executed by the full factorial statistical method using two numerical variables (HMDS/TMCS concentration and silica concentration) and one categorical variable (solvent types). The uncoated material revealed higher weight gain in mass and moisture content than that of the coated bamboo after the soil burial test to assess the durability of the bamboo. However, the durability of superhydrophobic coating realized hydrophobic performance for both agents during sand abrasion for a total of 120 s at an angle of 45°. Statistical results showed the optimum contact angle (CA) achieved in superhydrophobic performance with lower silica concentration for HMDS concentration and the appropriate solvent of n-hexane for HMDS and iso-octane for TMCS. All results were supported using many instruments of analysis to confirm the step-by-step alteration of geothermal silica to be used as a superhydrophobic coating, such as XRF, XRD, FTIR, SEM, and SEM EDX.
Collapse
|
4
|
Tousignant MN, Rice NA, Peltekoff A, Sundaresan C, Miao C, Hamad WY, Lessard BH. Improving Thin-Film Properties of Poly(vinyl alcohol) by the Addition of Low-Weight Percentages of Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3550-3557. [PMID: 32163710 DOI: 10.1021/acs.langmuir.0c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increased demand for electronic devices, combined with a desire to minimize the environmental impact, necessitates the development of new eco-friendly materials. One promising approach is the incorporation of renewable and green materials that possess the desired mechanical and electrical properties while allowing for more ecologically friendly disposal of these devices. The addition of low-weight percentages (0.25-0.75 wt %) of cellulose nanocrystals (CNCs) was investigated as an environmentally friendly additive in aqueous dispersions of poly(vinyl alcohol) (PVA). It was found that these low CNC loadings were sufficient to induce a favorable increase in viscosity, which in turn dramatically enhanced the film quality of the PVA blends through an improvement in the critical radius of the spun film, overall film thickness, and homogeneity of the thin film. This corresponded to an increase in the number of functioning organic electronic devices that could be fabricated by spin coating, including metal-insulator-metal (MIM) capacitors and organic thin-film transistors (OTFTs). Most importantly, the incorporation of CNCs into PVA did not significantly alter the native dielectric properties of the polymer thin films when incorporated into both MIM capacitors and OTFTs.
Collapse
Affiliation(s)
- Mathieu N Tousignant
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Nicole A Rice
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Alexander Peltekoff
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Chithiravel Sundaresan
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
- Institute for Microstructural Sciences (IMS), National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Chuanwei Miao
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Wadood Y Hamad
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Benoît H Lessard
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
5
|
Kim MW, Kwon S, Kim J, Lee C, Park I, Shim JH, Jeong IS, Jo YR, Park B, Lee JH, Lee K, Kim BJ. Reversible Polymorphic Transition and Hysteresis-Driven Phase Selectivity in Single-Crystalline C8-BTBT Rods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906109. [PMID: 31859444 DOI: 10.1002/smll.201906109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Organic semiconductors (OSCs) are highly susceptible to the formation of metastable polymorphs that are often transformed by external stimuli. However, thermally reversible transformations in OSCs with stability have not been achieved due to weak van der Waals forces, and poor phase homogeneity and crystallinity. Here, a polymorph of a single crystalline 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothio-phene rod on a low molecular weight poly(methyl methacrylate) (≈120k) that limits crystal coarsening during solvent vapor annealing is fabricated. Molecules in the polymorph lie down slightly toward the substrate compared to the equilibrium state, inducing an order of greater resistivity. During thermal cycling, the polymorph exhibits a reversible change in resistivity by 5.5 orders with hysteresis; this transition is stable toward bias and thermal cycling. Remarkably, varying cycling temperatures leads to diverse resistivities near room temperature, important for nonvolatile multivalue memories. These trends persist in the carrier mobility and on/off ratio of the polymorph field-effect transistor. A combination of in situ grazing incident wide angle X-ray scattering analyses, visualization for electronic and structural analysis simulations, and density functional theory calculations reveals that molecular tilt governs the charge transport characteristics; the polymorph transforms as molecules tilt, and thereby, only a homogeneous single-crystalline phase appears at each temperature.
Collapse
Affiliation(s)
- Min-Woo Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sooncheol Kwon
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Heeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Changhoon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Ina Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Il-Seok Jeong
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yong-Ryun Jo
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Byoungwook Park
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Joo-Hyung Lee
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kwanghee Lee
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Heeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
6
|
Tang Z, Wei X, Zhang W, Zhou Y, Wei C, Huang J, Chen Z, Wang L, Yu G. An A−D−Aʹ−Dʹ strategy enables perylenediimide-based polymer dyes exhibiting enhanced electron transport characteristics. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gutiérrez-Moreno D, Sastre-Santos Á, Fernández-Lázaro F. Direct amination and N-heteroarylation of perylenediimides. Org Chem Front 2019. [DOI: 10.1039/c9qo00491b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild, fluoride-mediated reaction for the direct introduction of amines and N-heterocycles.
Collapse
Affiliation(s)
- David Gutiérrez-Moreno
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- Avda. de la Universidad s/n
- Elche 03202
| | - Ángela Sastre-Santos
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- Avda. de la Universidad s/n
- Elche 03202
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- Avda. de la Universidad s/n
- Elche 03202
| |
Collapse
|
8
|
Meena S, Mohammad T, Dutta V, Jacob J. Design and synthesis of N-substituted perylene diimide based low band gap polymers for organic solar cell applications. RSC Adv 2018; 8:30468-30480. [PMID: 35546835 PMCID: PMC9085418 DOI: 10.1039/c8ra05232h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, we report on the synthesis and device studies of a series of new copolymers containing N-substituted perylene dimide and dioctylfluorene units as part of the main backbone. A facile synthetic approach avoiding non-selective bromination was used to synthesize the monomer M1 by the reaction of perylene-3,4,9,10-tetracarboxylic dianhydride with 2-amino-7-bromo-9,9-dioctylfluorene. The copolymers P1 and P2 were synthesized by Suzuki polycondensation of M1 with 2,2′-(9,9-dioctyl-9H-fluoren-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) M2 and 9-(heptadecan-9-yl)-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole M3, respectively. The copolymer P3 was synthesized by direct arylation polymerization of M1 with 4,7-bis(4-octylthiophen-2-yl)benzo[c]-1,2,5-thiadiazole M4. All the copolymers showed thermal stability greater than 380 °C as evidenced from thermogravimetric analysis. The copolymers exhibited a narrow optical band gap (1.80–2.08 eV) with their UV-visible absorption spectra extending up to the NIR region and they are found to be suitable for use in OSC applications. The molecular weights of the polymers P1–P3 were found to be in the range of 10.68 to 16.02 kg mol−1 as measured from GPC analysis. The surface morphology of the active layers based on P1/P2/P3:P3HT blend films was investigated by AFM and the rms values from height images range from 0.65 to 2.90 nm. The polymers were blended with P3HT to fabricate BHJ solar cells in three different weight ratios i.e. 1 : 1, 1.5 : 1 and 2 : 1 and the best power conversion efficiency was observed for the binary film of P3:P3HT blend device in a 1 : 1 weight ratio which reached up to 1.96% with a Voc of 0.55 V, Jsc of 10.12 mA cm−2 and FF of 34.63% which is among the highest reported for BHJ solar cells with N-substituted PDI based acceptors. Newly designed N-substituted perylene diimide based acceptor copolymers have been characterized and tested for organic solar cells with P3HT in different weight ratios.![]()
Collapse
Affiliation(s)
- Savita Meena
- Department of Materials Science and Engineering
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Tauheed Mohammad
- Photovoltaic Laboratory
- Centre for Energy Studies
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Viresh Dutta
- Photovoltaic Laboratory
- Centre for Energy Studies
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Josemon Jacob
- Department of Materials Science and Engineering
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| |
Collapse
|