1
|
Xu WK, Guo JM, Liu CH, Sun JT, Lv M, Wei BG. AgNTf 2 catalyzed cycloaddition of N-acyliminium ions with alkynes for the synthesis of the 3,4-dihydro-1,3-oxazin-2-one skeleton. Org Biomol Chem 2022; 20:5086-5094. [PMID: 35698865 DOI: 10.1039/d2ob00900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A catalyzed process for the synthesis of the 4,6-substituted 3,4-dihydro-1,3-oxazin-2-one skeleton has been developed through cycloaddition of in situ generated acyliminium intermediates with alkynes. A range of chain N,O-acetals and terminal alkynes were amenable for this mild transformation. As a result, a series of desired cycloaddition products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Wen-Ke Xu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Chang-Hong Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Min Lv
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Frye CW, Egger DT, Kounalis E, Pearce AJ, Cheng Y, Tonks IA. α-Diimine synthesis via titanium-mediated multicomponent diimination of alkynes with C-nitrosos. Chem Sci 2022; 13:1469-1477. [PMID: 35222931 PMCID: PMC8809399 DOI: 10.1039/d1sc06111a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/26/2021] [Indexed: 01/04/2023] Open
Abstract
α-Diimines are commonly used as supporting ligands for a variety of transition metal-catalyzed processes, most notably in α-olefin polymerization. They are also precursors to valuable synthetic targets, such as chiral 1,2-diamines. Their synthesis is usually performed through acid-catalyzed condensation of amines with α-diketones. Despite the simplicity of this approach, accessing unsymmetrical α-diimines is challenging. Herein, we report the Ti-mediated intermolecular diimination of alkynes to afford a variety of symmetrical and unsymmetrical α-diimines through the reaction of diazatitanacyclohexadiene intermediates with C-nitrosos. These diazatitanacycles can be readily accessed in situ via the multicomponent coupling of Ti[triple bond, length as m-dash]NR imidos with alkynes and nitriles. The formation of α-diimines is achieved through formal [4 + 2]-cycloaddition of the C-nitroso to the Ti and γ-carbon of the diazatitanacyclohexadiene followed by two subsequent cycloreversion steps to eliminate nitrile and afford the α-diimine and a Ti oxo.
Collapse
Affiliation(s)
- Connor W Frye
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Dominic T Egger
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Errikos Kounalis
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Adam J Pearce
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Yukun Cheng
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
3
|
Panda J, Raiguru BP, Mishra M, Mohapatra S, Nayak S. Recent Advances in the Synthesis of Imidazo[1,2‐
a
]pyridines: A Brief Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Mitali Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
4
|
Song H, Sun J, LÜ M, Liu Y, Wei B. Trifluoromethyl Sulfonic Anhydride Mediated Addition of Pyridine with Ynamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Affiliation(s)
- Qun Li
- College of Food and Biology, Changchun Polytechnic, Changchun, China
| | - Liguo Han
- College of Food and Biology, Changchun Polytechnic, Changchun, China
| | - Li Zhao
- Nursing College of Chifeng University, Chifeng, Inner Mongolia, China
| | - Yue Hou
- Changchun University of Science and Technology, Changchun, China
| | - Ranjit Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
6
|
Hu YC, Zhao Y, Wan B, Chen QA. Reactivity of ynamides in catalytic intermolecular annulations. Chem Soc Rev 2021; 50:2582-2625. [PMID: 33367365 DOI: 10.1039/d0cs00283f] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ynamides are unique alkynes with a carbon-carbon triple bond directly attached to the nitrogen atom bearing an electron-withdrawing group. The alkyne is strongly polarized by the electron-donating nitrogen atom, but its high reactivity can be finely tempered by the electron-withdrawing group. Accordingly, ynamides are endowed with both nucleophilic and electrophilic properties and their chemistry has been an active research field. The catalytic intermolecular annulations of ynamides, featuring divergent assembly of structurally important amino-heterocycles in a regioselective manner, have gained much attention over the past decade. This review aims to provide a comprehensive summary of the advances achieved in this area involving transition metal and acid catalysis. Moreover, the intermolecular annulations of ynamide analogs including ynol ethers and thioalkynes are also discussed, which can provide insights into the reactivity difference caused by the heteroatoms.
Collapse
Affiliation(s)
- Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
7
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Reen GK, Kumar A, Sharma P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage. Beilstein J Org Chem 2019; 15:1612-1704. [PMID: 31435443 PMCID: PMC6664406 DOI: 10.3762/bjoc.15.165] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
A comprehensive account of recent advances in the synthesis of imidazopyridines, assisted through transition-metal-catalyzed multicomponent reactions, C-H activation/functionalization and coupling reactions are highlighted in this review article. The basic illustration of this review comprises of schemes with concise account of explanatory text. The schemes depict the reaction conditions along with a quick look into the mechanism involved to render a deep understanding of the catalytic role. At some instances optimizations of certain features have been illustrated through tables, i.e., selectivity of catalyst, loading of the catalyst and percentage yield with different substrates. Each of the reported examples has been rigorously analyzed for reacting substrates, reaction conditions and transition metals used as the catalyst. This review will be helpful to the chemists in understanding the challenges associated with the reported methods as well as the future possibilities, both in the choice of substrates and catalysts. This review would be quite appealing to a wider range of organic chemists in academia and industrial R&D sectors working in the field of heterocyclic syntheses. In a nutshell, this review will be a guiding torch to envisage: (i) the role of various transition metals in the domain dedicated towards method development and (ii) for the modifications needed thereof in the R&D sector.
Collapse
Affiliation(s)
| | - Ashok Kumar
- School of Chemical Sciences, Devi Ahilya University, Indore, (M. P.), India
| | - Pratibha Sharma
- School of Chemical Sciences, Devi Ahilya University, Indore, (M. P.), India
| |
Collapse
|
9
|
Reinus B, Kerwin SM. Preparation and Utility of N-Alkynyl Azoles in Synthesis. Molecules 2019; 24:E422. [PMID: 30682796 PMCID: PMC6384649 DOI: 10.3390/molecules24030422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/05/2022] Open
Abstract
Heteroatom-substituted alkynes have attracted a significant amount of interest in the synthetic community due to the polarized nature of these alkynes and their utility in a wide range of reactions. One specific class of heteroatom-substituted alkynes combines this utility with the presence of an azole moiety. These N-alkynyl azoles have been known for nearly 50 years, but recently there has been a tremendous increase in the number of reports detailing the synthesis and utility of this class of compound. While much of the chemistry of N-alkynyl azoles mirrors that of the more extensively studied N-alkynyl amides (ynamides), there are notable exceptions. In addition, as azoles are extremely common in natural products and pharmaceuticals, these N-alkynyl azoles have high potential for accessing biologically important compounds. In this review, the literature reports of N-alkynyl azole synthesis, reactions, and uses have been assembled. Collectively, these reports demonstrate the growth in this area and the promise of exploiting N-alkynyl azoles in synthesis.
Collapse
Affiliation(s)
- Brandon Reinus
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Sean M Kerwin
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
10
|
Dwivedi V, Rajesh M, Kumar R, Kant R, Sridhar Reddy M. A stereoselective thiocyanate conjugate addition to electron deficient alkynes and concomitant cyclization to N,S-heterocycles. Chem Commun (Camb) 2017; 53:11060-11063. [DOI: 10.1039/c7cc06081e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A regio- and stereoselective thiocyanate addition to ynones and the concomitant cyclizations of resultant vinyl thiocyanate to access thio-aza heterocycles are achieved using KSCN in AcOH without the need of any metal catalyst.
Collapse
Affiliation(s)
- Vikas Dwivedi
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Manda Rajesh
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Ravi Kumar
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| | - Ruchir Kant
- MSB Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Maddi Sridhar Reddy
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|