1
|
Chen Y, Song S, Sun Y, Wu F, Yang G, Wang Z, Yu M. Small animal PET imaging with the 68Ga-labeled pH (low) insertion peptide-like peptide YJL-4 in a triple-negative breast cancer mouse model. EJNMMI Radiopharm Chem 2024; 9:33. [PMID: 38678139 PMCID: PMC11055835 DOI: 10.1186/s41181-024-00267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The aim of this study was to prepare a novel 68Ga-labeled pH (low) insertion peptide (pHLIP)-like peptide, YJL-4, and determine its value for the early diagnosis of triple-negative breast cancer (TNBC) via in vivo imaging of tumor-bearing nude mice. The novel peptide YJL-4 was designed using a template-assisted method and synthesized by solid-phase peptide synthesis. After modification with the chelator 1,4,7‑triazacyclononane-N,N',N″-triacetic acid (NOTA), the peptide was labeled with 68Ga. Then, the biodistribution of 68Ga-YJL-4 in tumor-bearing nude mice was investigated, and the mice were imaged by small animal positron emission tomography (PET). RESULTS The radiochemical yield and radiochemical purity of 68Ga-YJL-4 were 89.5 ± 0.16% and 97.95 ± 0.06%, respectively. The biodistribution of 68Ga-YJL-4 in tumors (5.94 ± 1.27% ID/g, 6.72 ± 1.69% ID/g and 4.54 ± 0.58% ID/g at 1, 2 and 4 h after injection, respectively) was significantly greater than that of the control peptide in tumors at the corresponding time points (P < 0.01). Of the measured off-target organs, 68Ga-YJL-4 was highly distributed in the liver and blood. The small animal PET imaging results were consistent with the biodistribution results. The tumors were visualized by PET at 2 and 4 h after the injection of 68Ga-YJL-4. No tumors were observed in the control group. CONCLUSIONS The novel pHLIP family peptide YJL-4 can adopt an α-helical structure for easy insertion into the cell membrane in an acidic environment. 68Ga-YJL-4 was produced in high radiochemical yield with good stability and can target TNBC tissue. Moreover, the strong concentration of radioactive 68Ga-YJL-4 in the abdomen does not hinder the imaging of early TNBC.
Collapse
Affiliation(s)
- YueHua Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - ShuangShuang Song
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - YanQin Sun
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - FengYu Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - GuangJie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - ZhenGuang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China.
| | - MingMing Yu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China.
| |
Collapse
|
2
|
Liu YC, Wang ZX, Pan JY, Wang LQ, Dai XY, Wu KF, Ye XW, Xu XL. Recent Advances in Imaging Agents Anchored with pH (Low) Insertion Peptides for Cancer Theranostics. Molecules 2023; 28:molecules28052175. [PMID: 36903419 PMCID: PMC10004179 DOI: 10.3390/molecules28052175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The acidic extracellular microenvironment has become an effective target for diagnosing and treating tumors. A pH (low) insertion peptide (pHLIP) is a kind of peptide that can spontaneously fold into a transmembrane helix in an acidic microenvironment, and then insert into and cross the cell membrane for material transfer. The characteristics of the acidic tumor microenvironment provide a new method for pH-targeted molecular imaging and tumor-targeted therapy. As research has increased, the role of pHLIP as an imaging agent carrier in the field of tumor theranostics has become increasingly prominent. In this paper, we describe the current applications of pHLIP-anchored imaging agents for tumor diagnosis and treatment in terms of different molecular imaging methods, including magnetic resonance T1 imaging, magnetic resonance T2 imaging, SPECT/PET, fluorescence imaging, and photoacoustic imaging. Additionally, we discuss relevant challenges and future development prospects.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhi-Xian Wang
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jing-Yi Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ling-Qi Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xin-Yi Dai
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ke-Fei Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xue-Wei Ye
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
- Correspondence:
| |
Collapse
|
3
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
4
|
Frazee N, Mertz B. Intramolecular interactions play key role in stabilization of pHLIP at acidic conditions. J Comput Chem 2021; 42:1809-1816. [PMID: 34245047 DOI: 10.1002/jcc.26719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
The pH-Low Insertion Peptide (pHLIP) is a membrane-active peptide that spontaneously folds into a transmembrane α-helix upon acidification. This activity enables pHLIP to potentially act as a vector for drugs related to diseases characterized by acidosis such as cancer or heart ischemia. Presently, due to aggregation-based effects, formulations of pHLIP are only viable at near-μM concentrations. In addition, since most of pHLIP's measurable qualities involve a membrane, probing the details of pHLIP in the interstitial region is difficult. In attempts to shed light on these issues, we performed constant pH molecular dynamics simulations on pHLIP as well as P20G, a variant with increased helicity, in solution at 0 and 150 mM NaCl over a broad range of pHs. In general, the addition of ions reduced the effective pKa of the acidic residues in pHLIP. P20G exhibits a higher helicity than pHLIP in general and is more compact than pHLIP at pH values under 4. In terms of charge effects, sodium cations localized predominantly to the C-terminus of the peptide with a high density of acidic residues. Additionally, the salt bridge between R11 and D14 is by far the most favored and particularly so with pHLIP at 150 mM NaCl. We expect that this approach will be a valuable tool to screen variants of pHLIP for favorable properties in solution, an aspect of pHLIP design that to this point has largely been neglected.
Collapse
Affiliation(s)
- Nicolas Frazee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, WVU Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
Rosário-Ferreira N, Marques-Pereira C, Gouveia RP, Mourão J, Moreira IS. Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View. Methods Mol Biol 2021; 2315:3-28. [PMID: 34302667 DOI: 10.1007/978-1-0716-1468-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs' structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Catarina Marques-Pereira
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Raquel P Gouveia
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Burns V, Mertz B. Using Simulation to Understand the Role of Titration on the Stability of a Peptide-Lipid Bilayer Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12272-12280. [PMID: 32988206 PMCID: PMC7778881 DOI: 10.1021/acs.langmuir.0c02038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pH-low insertion peptide (pHLIP) is an anionic membrane-active peptide with promising potential for applications in imaging of cancer tumors and targeted delivery of chemotherapeutics. The key advantage of pHLIP lies in its acid sensitivity: in acidic cellular environments, pHLIP can insert unidirectionally into the plasma membrane. Partitioning-folding coupling is triggered by titration of the acidic residues in pHLIP, transforming pHLIP from a hydrophilic to a hydrophobic peptide. Despite this knowledge, the reverse pathway that leads to exit of the peptide from the plasma membrane is poorly understood. Our hypothesis is that sequential deprotonation of pHLIP is a prerequisite for exit of the peptide from the plasma membrane. We carried out molecular dynamics (MD) simulations to characterize the effect that deprotonation of the acidic residues of pHLIP has on the stability of the peptide when inserted into a model lipid bilayer of 1-palmitoyl-2-oleoyl-sn-3-phosphocholine (POPC). Initiation of the exit mechanism is facilitated by a complex relationship between the peptide, bulk solvent, and the membrane environment. As the N-terminal acidic residues of pHLIP are deprotonated, localized loss of helicity drives unfolding of the peptide and more pronounced interactions with the bilayer at the lipid-water interface. Deprotonation of the C-terminal acidic residues (D25, D31, D33, and E34) leads to further loss of secondary structure distal from the C-terminus, as well as formation of a water channel that stabilizes the orientation of pHLIP parallel to the membrane normal. Together, these results help explain how stabilization of intermediates between the surface-bound and inserted states of pHLIP occur and provide insights into rational design of pHLIP variants with modified abilities of insertion.
Collapse
Affiliation(s)
- Violetta Burns
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
7
|
Westerfield J, Gupta C, Scott HL, Ye Y, Cameron A, Mertz B, Barrera FN. Ions Modulate Key Interactions between pHLIP and Lipid Membranes. Biophys J 2019; 117:920-929. [PMID: 31422821 DOI: 10.1016/j.bpj.2019.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/04/2023] Open
Abstract
The pH-low insertion peptide (pHLIP) is used for targeted delivery of drug cargoes to acidic tissues such as tumors. The extracellular acidosis found in solid tumors triggers pHLIP to transition from a membrane-adsorbed state to fold into a transmembrane α-helix. Different factors influence the acidity required for pHLIP to insert into lipid membranes. One of them is the lipid headgroup composition, which defines the electrostatic profile of the membrane. However, the molecular interactions that drive the adsorption of pHLIP to the bilayer surface are poorly understood. In this study, we combine biophysical experiments and all-atom molecular dynamics simulations to understand the role played by electrostatics in the interaction between pHLIP and a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer. We observed that the solution ionic strength affects the structure of pHLIP at the membrane surface as well as the acidity needed for different steps in the membrane insertion process. In particular, our simulations revealed that an increase in ionic strength affected both pHLIP and the bilayer; the coordination of sodium ions with the C-terminus of pHLIP led to localized changes in helicity, whereas the coordination of sodium ions with the phosphate moiety of the phosphocholine headgroups had a condensing effect on our model bilayer. These results are relevant to our understanding of environmental influences on the ability of pHLIP to adsorb to the cell membrane and are useful in our fundamental understanding of the absorption of pH-responsive peptides and cell-penetrating peptides.
Collapse
Affiliation(s)
- Justin Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Chitrak Gupta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Haden L Scott
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Alayna Cameron
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia; WVU Cancer Institute, West Virginia University, Morgantown, West Virginia.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee.
| |
Collapse
|
8
|
Kalmouni M, Al-Hosani S, Magzoub M. Cancer targeting peptides. Cell Mol Life Sci 2019; 76:2171-2183. [PMID: 30877335 PMCID: PMC11105397 DOI: 10.1007/s00018-019-03061-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/08/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Despite continuing advances in the development of biomacromolecules for therapeutic purposes, successful application of these often large and hydrophilic molecules has been hindered by their inability to efficiently traverse the cellular plasma membrane. In recent years, cell-penetrating peptides (CPPs) have received considerable attention as a promising class of delivery vectors due to their ability to mediate the efficient import of a large number of cargoes in vitro and in vivo. However, the lack of target specificity of CPPs remains a major obstacle to their clinical development. To address this issue, researchers have developed strategies in which chemotherapeutic drugs are conjugated to cancer targeting peptides (CTPs) that exploit the unique characteristics of the tumor microenvironment or cancer cells, thereby improving cancer cell specificity. This review highlights several of these strategies that are currently in use, and discusses how multi-component nanoparticles conjugated to CTPs can be designed to provide a more efficient cancer therapeutic delivery strategy.
Collapse
Affiliation(s)
- Mona Kalmouni
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Sumaya Al-Hosani
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA. Activity and characterization of a pH-sensitive antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182984. [PMID: 31075228 DOI: 10.1016/j.bbamem.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes.
Collapse
Affiliation(s)
- Morgan A Hitchner
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Luis E Santiago-Ortiz
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Matthew R Necelis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - David J Shirley
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Thaddeus J Palmer
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Katharine E Tarnawsky
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America; Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America.
| |
Collapse
|
10
|
Gupta C, Ren Y, Mertz B. Cooperative Nonbonded Forces Control Membrane Binding of the pH-Low Insertion Peptide pHLIP. Biophys J 2018; 115:2403-2412. [PMID: 30503536 DOI: 10.1016/j.bpj.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/10/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Peptides with the ability to bind and insert into the cell membrane have immense potential in biomedical applications. pH (low) insertion peptide (pHLIP), a water-soluble polypeptide derived from helix C of bacteriorhodopsin, can insert into a membrane at acidic pH to form a stable transmembrane α-helix. The insertion process takes place in three stages: pHLIP is unstructured and soluble in water at neutral pH (state I), unstructured and bound to the surface of a membrane at neutral pH (state II), and inserted into the membrane as an α-helix at low pH (state III). Using molecular dynamics simulations, we have modeled state II of pHLIP and a fast-folding variant of pHLIP, in which each peptide is bound to a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer surface. Our results provide strong support for recently published spectroscopic studies, namely that pHLIP preferentially binds to the bilayer surface as a function of location of anionic amino acids and that backbone dehydration occurs upon binding. Unexpectedly, we also observed several instances of segments of pHLIP folding into a stable helical turn. Our results provide a molecular level of detail that is essential to providing new insights into pHLIP function and to facilitate design of variants with improved membrane-active capabilities.
Collapse
Affiliation(s)
- Chitrak Gupta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Yue Ren
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
11
|
Vila-Viçosa D, Silva TFD, Slaybaugh G, Reshetnyak YK, Andreev OA, Machuqueiro M. Membrane-Induced p K a Shifts in wt-pHLIP and Its L16H Variant. J Chem Theory Comput 2018; 14:3289-3297. [PMID: 29733633 DOI: 10.1021/acs.jctc.8b00102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pH (low) insertion peptides (pHLIPs) is a family of peptides that are able to insert into a lipid bilayer at acidic pH. The molecular mechanism of pHLIPs insertion, folding, and stability in the membrane at low pH is based on multiple protonation events, which are challenging to study at the molecular level. More specifically, the relation between the experimental p K of insertion (p Kexp) of pHLIPs and the p Ka of the key residues is yet to be clarified. We carried out a computational study, complemented with new experimental data, and established the influence of (de)protonation of titrable residues on the stability of the peptide membrane-inserted state. Constant-pH molecular dynamics simulations were employed to calculate the p Ka values of these residues along the membrane normal. In the wt-pHLIP, we identified Asp14 as the key residue for the stability of the membrane-inserted state, and its p Ka value is strongly correlated with the experimental p Kexp measured in thermodynamics studies. Also, in order to narrow down the pH range at which pHLIP is stable in the membrane, we designed a new pHLIP variant, L16H, where Leu in the 16th position was replaced by a titrable His residue. Our results showed that the L16H variant undergoes two transitions. The calculated p Ka and experimentally observed p Kexp values are in good agreement. Two distinct p Kexp values delimit a pH range where the L16H peptide is stably inserted in the membrane, while, outside this range, the membrane-inserted state is destabilized and the peptide exits from the bilayer. pHLIP peptides have been successfully used to target cancer cells for the delivery of diagnostics and therapeutic agents to acidic tumors. The fine-tuning of the stability of the pHLIP inserted state and its restriction to a narrow well-defined pH range might allow the design of new peptides, able to discriminate between tissues with different extracellular pH values.
Collapse
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química e Bioquímica, BioISI: Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade de Lisboa , 1749-016 Lisboa , Portugal
| | - Tomás F D Silva
- Centro de Química e Bioquímica, BioISI: Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade de Lisboa , 1749-016 Lisboa , Portugal
| | - Gregory Slaybaugh
- Department of Physics , University of Rhode Island , 2 Lippitt Road , Kingston , Rhode Island 02881 , United States
| | - Yana K Reshetnyak
- Department of Physics , University of Rhode Island , 2 Lippitt Road , Kingston , Rhode Island 02881 , United States
| | - Oleg A Andreev
- Department of Physics , University of Rhode Island , 2 Lippitt Road , Kingston , Rhode Island 02881 , United States
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, BioISI: Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade de Lisboa , 1749-016 Lisboa , Portugal
| |
Collapse
|