1
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Xiao X, Li H, Zhao L, Zhang Y, Liu Z. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother 2021; 143:112232. [PMID: 34649356 DOI: 10.1016/j.biopha.2021.112232] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are single stranded oligonucleotides with specific recognition and binding ability to target molecules, which can be obtained by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Aptamers have the advantages of low molecular weight, low immunogenicity, easy modification and high stability. They play promising role in promoting food safety, monitoring the environment and basic research, especially in clinical diagnosis and therapeutic drugs. To date, great achievements regarding the selection, modifications and application of aptamers have been made. However, since it is still a challenge to obtain aptamers with high affinity in a more effective way, few aptamer-based products have already successfully entered into clinical use. This review aims to provide a thorough overview of the latest advances in this rapidly developing field, focusing on aptamer screening methods for different targets, the structure of the interaction between aptamers and target substances, and the challenges and potential of current therapeutic aptamers.
Collapse
Affiliation(s)
- Xueran Xiao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing 102206, China
| | - Lijian Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
5
|
Alieva R, Novikov R, Tashlitsky V, Arutyunyan A, Kopylov A, Zavyalova E. Bimodular thrombin aptamers with two types of non-covalent locks. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:559-577. [PMID: 33847237 DOI: 10.1080/15257770.2021.1910297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Aptamers are structured oligonucleotides that specifically bind their targets. Oligonucleotides can be assembled in large nanostructures via intermolecular duplexes or G-quadruplexes. Addition of aptamers can be used to create nanostructures that bind specifically certain targets. Here two types of self-assembling locks were used to create bimodular aptamer constructions. Well-known aptamer to thrombin was chosen as a model object. The assembly of duplex locks was more efficient at low concentrations. The functional activity of aptamer modules was nearly the same as in HD1. However, the affinity of bimodular aptamers with G-quadruplex locks to immobilized thrombin was 5-10 times higher.
Collapse
Affiliation(s)
- Rugiya Alieva
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Roman Novikov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation
| | - Vadim Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
6
|
Bao HL, Ishizuka T, Yamashita A, Furukoji E, Asada Y, Xu Y. Improving Thermodynamic Stability and Anticoagulant Activity of a Thrombin Binding Aptamer by Incorporation of 8-trifluoromethyl-2'-deoxyguanosine. J Med Chem 2020; 64:711-718. [PMID: 33289557 DOI: 10.1021/acs.jmedchem.0c01711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we incorporated 8-trifluoromethyl-2'-deoxyguanosine (FG) into a thrombin binding aptamer (TBA). Circular dichroism, nuclear magnetic resonance (NMR), electrophoresis, and prothrombin time (PT) assay were performed to investigate the structure, thermodynamic stability, biological stability, and anticoagulant activity of the FG-modified TBA sequences. We found that the replacement of FG into TBA sequences led to a remarkable improvement in the melting temperature up to 30 °C compared with the native sequence. The trifluoromethyl group allowed us to investigate the TBA G-quadruplex structure by 19F NMR spectroscopy. Furthermore, PT assays showed that the modified sequences can significantly improve the anticoagulant activity in comparison with the native TBA. Finally, we demonstrated that the trifluoromethyl-modified TBA sequence could function as an anticoagulant reagent in live rats. Our results strongly suggested that FG is a powerful nucleoside derivative to increase the thermodynamic stability and anticoagulant activity of TBA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Atsushi Yamashita
- Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Eiji Furukoji
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
7
|
High bio-recognizing aptamer designing and optimization against human herpes virus-5. Eur J Pharm Sci 2020; 156:105572. [PMID: 32980430 DOI: 10.1016/j.ejps.2020.105572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
While the world is tackling one of the direst health emergencies, it has come to light that in the fight against viruses, preparedness is everything. A disease with the initial symptoms of the common flu has the capacity to disrupt the life of 7.8 billion people and thus no infection and especially no virus can be ignored. Hence, we have designed the high bio-recognizing DNA aptamer for diagnosis and therapeutics role against glycoprotein-B (gB) of Human Herpes Virus-5 (HHV-5). HHV-5 is linked with epidemiological and asymptomatic diseases leading to high mortality. Herein, we report potent aptamer (5'CTCGCTTACCCCTGGGTGTGCGGG3') which has high specificity to gB with energy score -523.28 kJ/mol, more than reference aptamer L19 (-363.50 kJ/mol). The stable binding of aptamer with gB was confirmed with atomic fluctuations 0.1 to 1.8 Å through anisotropic network analysis. Aptamer formed stem-loop conformation (-1.0 kcal/mol) by stochastic simulation and found stable with physicochemical properties. Importantly, aptamer was found biologically significant with consisting of putative transcription factors in its vicinity (SP1, GATA1, AP2, NF1) and also possesses homology with exonic sequence of SGSH gene which indicated regulatory role in blockade of viruses. Inaddition, we also proposed plausible mechanism of action of aptamer as antiviral therapeutics.
Collapse
|
8
|
Chrominski M, Baranowski MR, Chmielinski S, Kowalska J, Jemielity J. Synthesis of Trifluoromethylated Purine Ribonucleotides and Their Evaluation as 19F NMR Probes. J Org Chem 2020; 85:3440-3453. [PMID: 31994393 PMCID: PMC7497640 DOI: 10.1021/acs.joc.9b03198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protected guanosine and adenosine ribonucleosides and guanine nucleotides are readily functionalized with CF3 substituents within the nucleobase. Protected guanosine is trifluoromethylated at the C8 position under radical-generating conditions in up to 95% yield and guanosine 5'-oligophosphates in up to 35% yield. In the case of adenosine, the selectivity of trifluoromethylation depends heavily on the functional group protection strategy and leads to a set of CF3-modified nucleosides with different substitution patterns (C8, C2, or both) in up to 37% yield. Further transformations based on phosphorimidazolide chemistry afford various CF3-substituted mono- and dinucleoside oligophosphates in good yields. The utility of the trifluoromethylated nucleotides as probes for 19F NMR-based real-time enzymatic reaction monitoring is demonstrated with three different human nucleotide hydrolases (Fhit, DcpS, and cNIIIB). Substrate and product(s) resonances were sufficiently separated to enable effective tracking of each enzymatic activity of interest.
Collapse
Affiliation(s)
- Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Sebastian Chmielinski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Ma Y, Iida K, Nagasawa K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem Biophys Res Commun 2020; 531:3-17. [PMID: 31948752 DOI: 10.1016/j.bbrc.2019.12.103] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/06/2023]
Abstract
G-Quadruplex (G4) is one of the higher-order structures occurring in guanine-rich sequences of nucleic acids, and plays critical roles in biological processes. The G4-forming sequences can generate three kinds of topologies, i.e., parallel, anti-parallel, and hybrid, and these polymorphic structures have an important influence on G4-related biological functions. In this review, we highlight variety of structures generated by G4s containing various sequences and under diverse conditions. We also discuss the G4 ligands which induce specific topologies and/or conversion between different topologies.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Japan.
| | - Keisuke Iida
- Department of Chemistry, Chiba University, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan.
| |
Collapse
|
10
|
Shi H, Jin T, Zhang J, Huang X, Tan C, Jiang Y, Tan Y. A novel aptasensor strategy for protein detection based on G-quadruplex and exonuclease III-aided recycling amplification. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Ishizuka T, Bao HL, Xu Y. 19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled Nucleobase. Methods Mol Biol 2019; 2035:407-433. [PMID: 31444766 DOI: 10.1007/978-1-4939-9666-7_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplex structures have been suggested to be biologically important in processes such as transcription and translation, gene expression and regulation in human cancer cells, and regulation of telomere length. Investigation of G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these molecules. We developed the 19F-labeled nucleobases and introduced them into DNA sequences for the 19F NMR spectroscopy analysis. We present the 19F NMR methodology used in our research group for the study of G-quadruplex structures in vitro and in living cells.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
12
|
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2018; 37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia; School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Changying Chen
- School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|
13
|
Xu Y. Recent progress in human telomere RNA structure and function. Bioorg Med Chem Lett 2018; 28:2577-2584. [DOI: 10.1016/j.bmcl.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|