1
|
Finch KF, Zhang X, McSkimming A, Pascal RA. Preparation of Large Perphenylbiaryls: Can Intermolecular Coupling Compete with Intramolecular Cyclization of Precursors? Chemistry 2024:e202402897. [PMID: 39352746 DOI: 10.1002/chem.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
The highly substituted naphthalenes 1,2,3,4,5,6,7-heptaphenylnaphthalene (13), 2,3,4,5,6,7,8-heptaphenyl-1-naphthol (12), 1-bromo-2,3,4,5,6,7,8-heptaphenylnaphthalene (4), and 1-(phenylethynyl)-2,3,4,5,6,7,8-heptaphenylnaphthalene (5) were prepared by a variety of methods, and all but 5 were crystallographically characterized. The attempted Ullmann coupling of 4 to give tetradecaphenyl-1,1'-binaphthyl (3), at both 270 °C and 350 °C, yielded instead 1,2,3,4,5,6-hexaphenylfluoranthene (17) via an intramolecular cyclization reaction. When the alkyne 5 was heated with tetracyclone (6) at 350 °C, 1-(pentaphenylphenyl)-2,3,4,5,6,7,8-heptaphenylnaphthalene (7) was formed in 3 % yield. However, greater amounts of 5,6,7,8,9,14-hexaphenyldibenzo[a,e]pyrene (20, 11 %) and 1,2,3,4,5,6,7-heptaphenylfluoranthene (21, 11 %) were produced, the former by intramolecular cyclization and dehydrogenation of 5 and the latter by an intramolecular Diels-Alder reaction of 5 followed by extrusion of acetylene. The X-ray structure of 7 shows it to be an exceptionally crowded biaryl, and the X-ray structure of 20 shows it to be a saddle shaped polycyclic aromatic hydrocarbon.
Collapse
Affiliation(s)
- Ki F Finch
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Xiaodong Zhang
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Alex McSkimming
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Robert A Pascal
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
2
|
Kurokawa K, Ogawa N, Kuroda Y, Yamaoka Y, Takikawa H, Tsubaki K, Takasu K. Chromic properties of dibenzo[ j, l]fluoranthenes exhibiting different resonance contributions. Org Biomol Chem 2024; 22:5306-5313. [PMID: 38812407 DOI: 10.1039/d4ob00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Chromic molecules change colour in response to external stimuli and are utilized in applications such as food additive detection, light dimmers, and biological probes. One of the common design strategies for organic chromic molecules is based on changes in the π-conjugation. We have hypothesized that non-alternant polyaromatic hydrocarbon (PAH) skeletons can be used as backbones for chromic molecules. Herein, we synthesized hydroxy-substituted dibenzo[j,l]fluoranthenes, a class of non-alternant PAHs, as novel chromic compounds and evaluated their halochromic properties by UV-vis and fluorescence spectroscopy. Under basic conditions, the 1-hydroxy derivatives show a hyperchromic shift, whereas the 9-hydroxy derivatives show a bathochromic shift and fluorescence although the skeleton of the chromophore is the same. Density functional theory calculations indicated that the different chromic properties are attributed to the differences in their resonance structures.
Collapse
Affiliation(s)
- Kazuma Kurokawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Naoki Ogawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Türkmen YE. Recent advances in the synthesis and applications of fluoranthenes. Org Biomol Chem 2024; 22:2719-2733. [PMID: 38470856 DOI: 10.1039/d4ob00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
As an important subclass of polycyclic aromatic hydrocarbons (PAHs), fluoranthenes continue to attract significant attention in synthetic organic chemistry and materials science. In this article, an overview of recent advances in the synthesis of fluoranthene derivatives along with selected applications is provided. First, methods for fluoranthene synthesis with a classification based on strategic bond disconnections are discussed. Then, the total syntheses of natural products featuring the benzo[j]fluoranthene skeleton are covered. Finally, examples of important applications of a variety of fluoranthenes are summarized.
Collapse
Affiliation(s)
- Yunus Emre Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye.
- UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
4
|
Ketata N, Liu L, Ben Salem R, Doucet H. Mono or double Pd-catalyzed C-H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives. Beilstein J Org Chem 2024; 20:427-435. [PMID: 38410779 PMCID: PMC10896227 DOI: 10.3762/bjoc.20.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
The Pd-catalyzed annulative π-extension of 1,8-dibromonaphthalene for the preparation of fluoranthenes in a single operation has been investigated. With specific arenes such as fluorobenzenes, the Pd-catalyzed double functionalization of C-H bonds yields the desired fluoranthenes. The reaction proceeds via a palladium-catalyzed direct intermolecular arylation, followed by a direct intramolecular arylation step. As the C-H bond activation of several benzene derivatives remains very challenging, the preparation of fluoranthenes from 1,8-dibromonaphthalene via Suzuki coupling followed by intramolecular C-H activation has also been investigated to provide a complementary method. Using the most appropriate synthetic route and substrates, it is possible to introduce the desired functional groups at positions 7-10 on fluoranthenes.
Collapse
Affiliation(s)
- Nahed Ketata
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
- Organic chemistry laboratory, LR17ES08, Department of Chemistry, Faculty of Sciences, University of Sfax, B.P. 1171, 3038, Sfax, Tunisia
| | - Linhao Liu
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Ridha Ben Salem
- Organic chemistry laboratory, LR17ES08, Department of Chemistry, Faculty of Sciences, University of Sfax, B.P. 1171, 3038, Sfax, Tunisia
| | - Henri Doucet
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
5
|
Abe R, Nagashima Y, Tanaka J, Tanaka K. Room Temperature Fluoranthene Synthesis through Cationic Rh(I)/H 8-BINAP-Catalyzed [2 + 2 + 2] Cycloaddition: Unexpected Acceleration due to Noncovalent Interactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryota Abe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jin Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Sawano T, Takamura K, Yoshikawa T, Murata K, Koga M, Yamada R, Saito T, Tabata K, Ishii Y, Kashihara W, Nishihara T, Tanabe K, Suzuki T, Takeuchi R. Synthesis of azafluoranthenes by iridium-catalyzed [2 + 2 + 2] cycloaddition and evaluation of their fluorescence properties. Org Biomol Chem 2023; 21:323-331. [PMID: 36530147 DOI: 10.1039/d2ob01921c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a method for the synthesis of azafluoranthenes under neutral reaction conditions in a highly atom-economical manner by the iridium-catalyzed [2 + 2 + 2] cycloaddition of 1,8-dialkynylnaphthalenes with nitriles. A variety of nitriles react with methyl- or phenyl-substituted 1,8-dialkynylnaphthalenes to give a wide range of azafluoranthenes. Azafluoranthenes bearing an amino group show intense fluorescence at around 500 nm. Comparison of the fluorescence properties of amine-substituted azafluoranthenes with related compounds revealed the importance of the amine moiety for obtaining a high fluorescence quantum yield. The choice of the solvent affected the emission maxima and the fluorescence quantum yield. Azafluoranthenes bearing pyrrolidine exhibited blue-shifted emission bands in a non-polar solvent and gave a fluorescence quantum yield of 0.76 in toluene. A Lippert-Mataga plot and computational studies provide insight into the origin of the fluorescence of azafluoranthenes. Furthermore, cellular experiments using human breast adenocarcinoma cells SK-BR-3 demonstrated the feasibility of using azafluoranthenes as fluorescent probes.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Kaho Takamura
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Tomoka Yoshikawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Kayo Murata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Marina Koga
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Risa Yamada
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Takahide Saito
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Kazumasa Tabata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Yugo Ishii
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Wataru Kashihara
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| |
Collapse
|
7
|
Kato Y, Yoshino T, Gao M, Hasegawa JY, Kojima M, Matsunaga S. Iron/Photosensitizer Hybrid System Enables the Synthesis of Polyaryl-Substituted Azafluoranthenes. J Am Chem Soc 2022; 144:18450-18458. [PMID: 36167469 DOI: 10.1021/jacs.2c06993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosensitization of organometallics is a privileged strategy that enables challenging transformations in transition-metal catalysis. However, the usefulness of such photocatalyst-induced energy transfer has remained opaque in iron-catalyzed reactions despite the intriguing prospects of iron catalysis in synthetic chemistry. Herein, we demonstrate the use of iron/photosensitizer-cocatalyzed cycloaddition to synthesize polyarylpyridines and azafluoranthenes, which have been scarcely accessible using the established iron-catalyzed protocols. Mechanistic studies indicate that triplet energy transfer from the photocatalyst to a ferracyclic intermediate facilitates the thermally demanding nitrile insertion and accounts for the distinct reactivity of the hybrid system. This study thus provides the first demonstration of the role of photosensitization in overcoming the limitations of iron catalysis.
Collapse
Affiliation(s)
- Yoshimi Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Ahmadli D, Sahin Y, Calikyilmaz E, Şahin O, Türkmen YE. Rapid Access to Hydroxyfluoranthenes via a Domino Suzuki-Miyaura/Intramolecular Diels-Alder/Ring-Opening Reactions Sequence. J Org Chem 2022; 87:6336-6346. [PMID: 35389218 PMCID: PMC9087347 DOI: 10.1021/acs.joc.1c03080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In this work, we
developed an efficient method for the rapid construction
of fluoranthene skeleton to access a variety of substituted hydroxyfluoranthenes.
The 1-iodo-8-alkynylnaphthalene derivatives, which serve as substrates
for the key fluoranthene-forming step, were prepared via selective
monoalkynylative Sonogashira reactions of 1,8-diiodonaphthalene. The
domino reaction sequence which involves a sequential Suzuki–Miyaura
coupling, an intramolecular Diels–Alder reaction, and an aromatization-driven
ring-opening isomerization has been shown to give substituted hydroxyfluoranthenes
in up to 92% yield. This work demonstrates the utility of designing
new domino reactions for rapid access to substituted polycyclic aromatic
hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Dilgam Ahmadli
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara, 06800, Turkey
| | - Yesim Sahin
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara, 06800, Turkey
| | - Eylul Calikyilmaz
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara, 06800, Turkey
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop, 57000, Turkey
| | - Yunus E Türkmen
- Department of Chemistry, Faculty of Science, and UNAM, National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
10
|
Straightforward One-Pot Synthesis of New 4-Phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one Derivatives: X-ray Single Crystal Structure and Hirshfeld Analyses. CRYSTALS 2022. [DOI: 10.3390/cryst12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A straightforward one-pot route for the synthesis of a new 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one is reported form the direct hydrazinolysis of triketo ester and hydrazine hydrate in ethanol. 4-Phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one was subjected to aza-Michael addition and N-alkylation on reaction with a set of alkylating agents in the presence of K2CO3. Hydrazinolysis of 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one ester to hydrazide and conversion of hydrazide to thiosemicarbazide were successful. X-Ray single crystals analysis and 1H, 13C NMR were used for unambiguous structure confirmation. The O…H, N…H, C…N and C…C in 2, and the N…H, C…N, C…C, C…O and H…H interactions in 6 are the most important in the molecular packing based on Hirshfled analysis. Moreover, the presence of short C…C and C…N contacts in both compounds revealed the presence of π–π stacking interactions.
Collapse
|
11
|
Morimoto H, Matsuo K, Hayashi H, Yamada H, Aratani N. Facile Post-synthesis and Redox Behavior of π-Expanded Ferrocene and ansa-Ferrocene. CHEM LETT 2022. [DOI: 10.1246/cl.220011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Kyohei Matsuo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Hironobu Hayashi
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192
| |
Collapse
|
12
|
Can H, Can S, Ebiri R, Metin Ö. A facile synthesis of monodisperse cobalt–ruthenium alloy nanoparticles as catalysts for the dehydrogenation of morpholine borane and the hydrogenation of various organic compounds. NEW J CHEM 2022. [DOI: 10.1039/d2nj01761j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel method for the synthesis of CoRu alloy nanoparticles is developed and their catalysis was studied in the hydrolysis of morpholine-borane (MB) and the transfer hydrogenation of unsaturated organic compounds using MB as a new hydrogen donor.
Collapse
Affiliation(s)
- Hasan Can
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Atatürk University, 25240 Erzurum, Turkey
| | - Sümeyra Can
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Rüstem Ebiri
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
| |
Collapse
|
13
|
Huang F, Wang F, Hu Q, Tang L, Xu D, Fang Y, Zhang W. Monodisperse CuPd alloy nanoparticles as efficient and reusable catalyst for the C (sp
2
)–H bond activation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Huang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
- School of Chemistry and Chemical Engineering Huangshan University Huangshan PR China
| | - Feifan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Qiyan Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Lin Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Dongping Xu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Yang Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Wu Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| |
Collapse
|
14
|
Dong P, Majeed K, Wang L, Guo Z, Zhou F, Zhang Q. Transition metal-free approach to azafluoranthene scaffolds by aldol condensation/[1+2+3] annulation tandem reaction of isocyanoacetates with 8-(alkynyl)-1-naphthaldehydes. Chem Commun (Camb) 2021; 57:4855-4858. [PMID: 33870390 DOI: 10.1039/d1cc01015h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A transition metal-free aldol condensation/[1+2+3] annulation reaction of isocyanoacetates with 8-(alkynyl)-1-naphthaldehydes has been developed for the general synthesis of azafluoranthenes. This domino reaction enables successive formation of three new bonds and two rings from readily accessible starting materials in a single operation. Furthermore, this methodology can also be utilized to construct chromeno[4,3-c]pyridines and benzo[c][2,6]naphthyridines in moderate yields.
Collapse
Affiliation(s)
- Penghui Dong
- Xi'an Key Laboratory of Functional Organic Porous Materials, Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Aksoy M, Kilic H, Nişancı B, Metin Ö. Recent advances in the development of palladium nanocatalysts for sustainable organic transformations. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01283a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we highlighted Pd nanocatalysts which have been used in the development of sustainable organic transformations including transfer hydrogenation, C–H bond activation, and some carbon–carbon couplings in the last five years.
Collapse
Affiliation(s)
- Merve Aksoy
- Department of Chemistry
- College of Sciences
- Koç University
- Istanbul
- Turkey
| | - Haydar Kilic
- Oltu Vocational Training School
- Atatürk University
- Erzurum
- Turkey
| | - Bilal Nişancı
- Department of Chemistry
- Faculty of Sciences
- Atatürk University
- 25240 Erzurum
- Turkey
| | - Önder Metin
- Department of Chemistry
- College of Sciences
- Koç University
- Istanbul
- Turkey
| |
Collapse
|
16
|
Chen X, Zhang L, Wang Y, Qiu G, Liang Q, Zhou H. Copper-Catalyzed Tandem Radical Cyclization of 8-Ethynyl-1-naphthyl-amines for the Synthesis of 2 H-Benzo[ e][1,2]thiazine 1,1-Dioxides and its Fluorescence Properties. J Org Chem 2020; 85:12526-12534. [PMID: 32894946 DOI: 10.1021/acs.joc.0c01725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A copper-catalyzed radical cascade dehydrogenative cyclization of N-tosyl-8-ethynyl-1-naphthylamines under air is described herein for the synthesis of thioazafluoranthenes. The reaction proceeds smoothly with high efficiency and a broad reaction scope. The product is indeed a new fluorophore and its photophysical properties are also investigated. Based on the results, we are pleased to find that the Stokes shift of amino-linked thioazafluoranthenes in dilute tetrahydrofuran is determined to be 143 nm (4830 cm-1).
Collapse
Affiliation(s)
- Xia Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Lianpeng Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yuzhe Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Qinghui Liang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
17
|
Boraei ATA, Ghabbour HA, Sarhan AAM, Barakat A. Expeditious Green Synthesis of Novel 4-Methyl-1,2,5,6-tetraazafluoranthen-3(2 H)-one Analogue from Ninhydrin: N/S-Alkylation and Aza-Michael Addition. ACS OMEGA 2020; 5:5436-5442. [PMID: 32201835 PMCID: PMC7081446 DOI: 10.1021/acsomega.0c00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
A straightforward green synthesis of 4-methyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 6 is reported from ninhydrin 1 via condensation with ethyl acetoacetate, followed by cyclization with hydrazine hydrate in water as a benign solvent. Tetraazafluoranthen-3-thione 7 was obtained using Lawesson's reagent. N-alkylated tetraazafluoranthen-3-one 8-12 and S-alkylated analogues 13-15 were synthesized via alkylation. The investigation of the unique reactivity of 4-methyl-1,2,5,6-tetraazafluoranthen-3(2H)-one/thione toward the alkylation and aza-Michael additions was explored.
Collapse
Affiliation(s)
- Ahmed T. A. Boraei
- Chemistry
Department, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Hazem A. Ghabbour
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A. M. Sarhan
- Chemistry
Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| | - Assem Barakat
- Chemistry
Department, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Chemistry
Department, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
18
|
Hagui W, Doucet H, Soulé JF. Application of Palladium-Catalyzed C(sp2)–H Bond Arylation to the Synthesis of Polycyclic (Hetero)Aromatics. Chem 2019. [DOI: 10.1016/j.chempr.2019.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Wang J, Torigoe T, Kuninobu Y. Hydrogen-Bond-Controlled Formal Meta-Selective C-H Transformations and Regioselective Synthesis of Multisubstituted Aromatic Compounds. Org Lett 2019; 21:1342-1346. [PMID: 30735396 DOI: 10.1021/acs.orglett.9b00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The meta-selective introduction of functional groups into aromatic substrates was successfully achieved by hydrogen-bond-controlled meta-selective C-H borylation and successive conversion of the boryl group to other functional groups. By this method a wide range of functional groups could be introduced without isolation of the borylated intermediates. The desired meta-functionalized aromatic products were obtained in a one-pot manner even on a gram scale. Regioselective synthesis of multisubstituted aromatic compounds was also achieved.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan.,Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan.,Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan
| |
Collapse
|