1
|
Iazzetti A, Mazzoccanti G, Bencivenni G, Righi P, Calcaterra A, Villani C, Ciogli A. Primary Amine Catalyzed Activation of Carbonyl Compounds: A Study on Reaction Pathways and Reactive Intermediates by Mass Spectrometry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonia Iazzetti
- Department of Basic Biotechnological Sciences Intensivological and perioperative clinics Catholic University of Sacred Heart L. go F. Vito 1 00168 Rome Italy
| | - Giulia Mazzoccanti
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Paolo Righi
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Andrea Calcaterra
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| |
Collapse
|
2
|
Salehi Marzijarani N, Lam YH, Wang X, Klapars A, Qi J, Song Z, Sherry BD, Liu Z, Ji Y. New Mechanism for Cinchona Alkaloid-Catalysis Allows for an Efficient Thiophosphorylation Reaction. J Am Chem Soc 2020; 142:20021-20029. [PMID: 33180475 DOI: 10.1021/jacs.0c09192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient synthesis of nucleoside 5'-monothiophosphates under mild reaction conditions using commercially available thiophosphoryl chloride was achieved with a cinchona alkaloid catalyst. A detailed mechanistic study of the reaction was undertaken, employing a combination of reaction kinetics, NMR spectroscopy, and computational modeling, to better understand the observed reactivity. Taken collectively, the results support an unprecedented mechanism for this class of organocatalyst.
Collapse
Affiliation(s)
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xiao Wang
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ji Qi
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States.,Department of Process Research and Development, MSD R&D (China) Co., Ltd., Building 21 Rongda Road, Wangjing R&D Base, Zhongguancun Electronic Zone West Zone, Beijing 100012, China
| | - Zhiyan Song
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Benjamin D Sherry
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhijian Liu
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yining Ji
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
3
|
Synthesis and Catalytic Application of Two Mononuclear Complexes Bearing Diethylenetriamine Derivative Ligand. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25092101. [PMID: 32365868 PMCID: PMC7248821 DOI: 10.3390/molecules25092101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Two mononuclear zero-dimensional Ni(II) and Zn(II) complexes bearing diethylenetriamine derivative ligand, namely [NiL(CH3COO)2(H2O)] (1) and [ZnL(CH3COO)2] (2) [L = N, N'-bis(2-hydroxybenzyl)diethylenetriamine], were synthesized under reflux conditions. The molecular composition and structure of the complexes were identified by IR, PXRD, elemental analyses, and single crystal X-ray diffraction. Complex 1 belongs to a monoclinic crystal system with the P21/n space group, and Complex 2 belongs to a monoclinic crystal system with the C2/c space group. The Henry reaction of nitromethane with aromatic aldehydes was explored with Complexes 1 and 2 as the catalyst. Results from the catalytic reaction revealed that the complexes displayed excellent catalytic activities under the optimized conditions and that the substrate scope of aromatic aldehydes could be extended to a certain extent. In addition, the possible catalytic mechanism of the Henry reaction was also deduced.
Collapse
|
4
|
Sonsona IG, Alegre-Requena JV, Marqués-López E, Gimeno MC, Herrera RP. Asymmetric Organocatalyzed Aza-Henry Reaction of Hydrazones: Experimental and Computational Studies. Chemistry 2020; 26:5469-5478. [PMID: 32012361 DOI: 10.1002/chem.202000232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The first asymmetric catalyzed aza-Henry reaction of hydrazones is presented. In this process, quinine was used as the catalyst to synthesize different alkyl substituted β-nitrohydrazides with ee up to 77 %. This ee was improved up to 94 % by a further recrystallization and the opposite enantiomer can be obtained by using quinidine as the catalyst, opening exciting possibilities in fields in which the control of chirality is vital, such as the pharmaceutical industry. Additionally, experimental and ab initio studies were performed to understand the reaction mechanism. The experimental results revealed an unexpected secondary kinetic isotope effect (KIE) that is explained by the calculated reaction pathway, which shows that the protonation of the initial hydrazone and the C-C bond forming reaction occur during a concerted process. This concerted mechanism makes the catalysis conceptually different to traditional base-promoted Henry and aza-Henry reactions.
Collapse
Affiliation(s)
- Isaac G Sonsona
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - Juan V Alegre-Requena
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de, Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de, Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| |
Collapse
|
5
|
Shan C, Zhang T, Xiong Q, Yan H, Bai R, Lan Y. Hydrogen‐Bond‐Induced Chiral Axis Construction: Theoretical Study of Cinchonine–Thiourea‐Catalyzed Enantioselective Intramolecular Cycloaddition. Chem Asian J 2019; 14:2731-2736. [DOI: 10.1002/asia.201900624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Chunhui Shan
- Postdoctoral Station of Biomedical EngineeringChongqing University Chongqing 400030 P.R. China
| | - Tao Zhang
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 P.R. China
| | - Qin Xiong
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug, ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 400030 P.R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 P.R. China
| | - Yu Lan
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 P.R. China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P.R. China
| |
Collapse
|
6
|
Zheng D, Raeisolsadati Oskouei M, Sanders HJ, Qian J, Williams RM, Brouwer AM. Photophysics of perylene monoimide-labelled organocatalysts. Photochem Photobiol Sci 2019; 18:524-533. [DOI: 10.1039/c8pp00462e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fluorophore-tagged organocatalyst undergoes electron transfer in polar solvents allowing to sense the presence of its free quinuclidine catalytic site.
Collapse
Affiliation(s)
- Dongdong Zheng
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | | | - Hans J. Sanders
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | - Junhong Qian
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | - René M. Williams
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | - Albert M. Brouwer
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| |
Collapse
|
7
|
Heshmat M. Unraveling the Origin of Solvent Induced Enantioselectivity in the Henry Reaction with Cinchona Thiourea as Catalyst. J Phys Chem A 2018; 122:7974-7982. [PMID: 30230831 DOI: 10.1021/acs.jpca.8b04589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we report an energy decomposition and electronic structure analysis using DFT calculations for the C-C coupling step in the Henry reaction with cinchona thiourea as catalyst and DMF solvent to unravel the origin of enantioselectivity. We found that the conformation of flexible thiourea moiety is affected by the solvent, and in the preferred conformation of thiourea in strong Lewis basic DMF solvent, the N-H sites are in the opposite direction, i.e., in trans conformation. Hence, the thiourea moiety acts via single hydrogen bonding with substrates. The conformation of the substrates with respect to the forming C-C bond plays critical role to increase orbital interaction between two substrates and enhances hydrogen bond strength between substrates and catalyst, which in turn stabilizes the positive charge developing on the catalyst at the transition state for one of the enantiomers ( S). Thus, the enantioselectivity has electronic structure origin. The stronger H-bond formation in the S enantiomer has been confirmed by the calculated IR spectra and is in agreement with thus far experimental and computational results.
Collapse
Affiliation(s)
- Mojgan Heshmat
- Department of Organic Chemistry , Stockholm University , Stockholm , 10691 , Sweden.,Theoretical Chemistry , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|