1
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
2
|
Shepelytskyi Y, Grynko V, Batarchuk V, Hasselbrink CL, Kovacs AH, Ruset IC, Rodriguez K, Al Taradeh N, Talwar T, DeBoef B, Albert MS. R3-Noria-methanesulfonate: A Molecular Cage with Superior Hyperpolarized Xenon-129 MRI Contrast. ACS Sens 2023; 8:4707-4715. [PMID: 38064687 DOI: 10.1021/acssensors.3c01791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Viktoriia Batarchuk
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Carson L Hasselbrink
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Antal H Kovacs
- Applied Life Science Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Iulian C Ruset
- Xemed LCC, 16 Strafford Avenue, Durham, New Hampshire 03824, United States
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Nedal Al Taradeh
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
- Northern Ontario School of Medicine, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
3
|
Grynko V, Shepelytskyi Y, Batarchuk V, Aalto H, Li T, Ruset IC, DeBoef B, Albert MS. Cucurbit[6]uril Hyperpolarized Chemical Exchange Saturation Transfer Pulse Sequence Parameter Optimization and Detectability Limit Assessment at 3.0T. Chemphyschem 2023; 24:e202300346. [PMID: 37713677 DOI: 10.1002/cphc.202300346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 μM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 μM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.
Collapse
Affiliation(s)
- Vira Grynko
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry and Materials Science Program, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Viktoriia Batarchuk
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Hannah Aalto
- Applied Life Science Program, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | | | - Brenton DeBoef
- Chemistry Department, University of Rhode Island, 45 Upper College Rd, Kingston, RI, 02881, USA
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
- Northern Ontario School of Medicine, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
4
|
Zemerov SD, Lin Y, Dmochowski IJ. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing. Anal Chem 2021; 93:1507-1514. [PMID: 33356164 DOI: 10.1021/acs.analchem.0c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptophane host molecules provide ultrasensitive contrast agents for 129Xe NMR/MRI. To investigate key features of cryptophane-Xe sensing behavior, we designed a novel water-soluble cryptophane with a pendant hydrophobic adamantyl moiety, which has good affinity for a model receptor, beta-cyclodextrin (β-CD). Adamantyl-functionalized cryptophane-A (AFCA) was synthesized and characterized for Xe affinity, 129Xe NMR signal, and aggregation state at varying AFCA and β-CD concentrations. The Xe-AFCA association constant was determined by fluorescence quenching, KA = 114,000 ± 5000 M-1 at 293 K, which is the highest reported affinity for a cryptophane host in phosphate-buffered saline (pH 7.2). No hyperpolarized (hp) 129Xe NMR peak corresponding to AFCA-bound Xe was directly observed at high (100 μM) AFCA concentration, where small cryptophane aggregates were observed, and was only detected at low (15 μM) AFCA concentration, where the sensor remained fully monomeric in solution. Additionally, we observed no change in the chemical shift of AFCA-encapsulated 129Xe after β-CD binding to the adamantyl moiety and a concomitant lack of change in the size distribution of the complex, suggesting that a change in the aggregation state is necessary to elicit a 129Xe NMR chemical shift in cryptophane-based sensing. These results aid in further elucidating the recently discovered aggregation phenomenon, highlight limitations of cryptophane-based Xe sensing, and offer insights into the design of monomeric, high-affinity Xe sensors.
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules 2020; 25:molecules25235576. [PMID: 33261035 PMCID: PMC7730728 DOI: 10.3390/molecules25235576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides consisting of multiple glucose subunits. CDs are widely used in host–guest chemistry and biochemistry due to their structural advantages, biocompatibility, and ability to form inclusion complexes. Recently, CDs have become of high interest in the field of medical imaging as a potential scaffold for the development of a large variety of the contrast agents suitable for magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, positron emission tomography, single photon emission computed tomography, and computed tomography. The aim of this review is to summarize and highlight the achievements in the field of cyclodextrin-based contrast agents for medical imaging.
Collapse
|
6
|
Fernando PUI, Shepelytskyi Y, Cesana PT, Wade A, Grynko V, Mendieta AM, Seveney LE, Brown JD, Hane FT, Albert MS, DeBoef B. Decacationic Pillar[5]arene: A New Scaffold for the Development of 129Xe MRI Imaging Agents. ACS OMEGA 2020; 5:27783-27788. [PMID: 33163761 PMCID: PMC7643082 DOI: 10.1021/acsomega.0c02565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/07/2020] [Indexed: 05/16/2023]
Abstract
A decacationic water-soluble pillar[5]arene possessing a nonsolvated hydrophobic core has been designed and synthesized. This supramolecular host is capable of binding xenon, as evidenced by hyperCEST depletion experiments. Fluorescence-based studies also demonstrate that xenon binds into the cavity of the pillararene with an association constant of 4.6 × 103 M-1. These data indicate that the water-soluble pillararene is a potential scaffold for building contrast agents that can be detected by xenon-129 magnetic resonance imaging.
Collapse
Affiliation(s)
- P. U.
Ashvin I. Fernando
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
- U.S.
Army Corps of Engineers, Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Yurii Shepelytskyi
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Paul T. Cesana
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Alanna Wade
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Vira Grynko
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Adriana M. Mendieta
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Lauren E. Seveney
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joseph D. Brown
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
- United
States Coast Guard Academy, 31 Mohegan Avenue, New London, Connecticut 06320, United States
| | - Francis T. Hane
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder
Bay, Ontario P7B 6V4, Canada
| | - Mitchell S. Albert
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder
Bay, Ontario P7B 6V4, Canada
| | - Brenton DeBoef
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Zemerov SD, Roose BW, Farenhem KL, Zhao Z, Stringer MA, Goldman AR, Speicher DW, Dmochowski IJ. 129Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration. Anal Chem 2020; 92:12817-12824. [PMID: 32897053 PMCID: PMC7649717 DOI: 10.1021/acs.analchem.0c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dysregulation of cellular ribose uptake can be indicative of metabolic abnormalities or tumorigenesis. However, analytical methods are currently limited for quantifying ribose concentration in complex biological samples. Here, we utilize the highly specific recognition of ribose by ribose-binding protein (RBP) to develop a single-protein ribose sensor detectable via a sensitive NMR technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST). We demonstrate that RBP, with a tunable ribose-binding site and further engineered to bind xenon, enables the quantitation of ribose over a wide concentration range (nM to mM). Ribose binding induces the RBP "closed" conformation, which slows Xe exchange to a rate detectable by hyper-CEST. Such detection is remarkably specific for ribose, with the minimal background signal from endogenous sugars of similar size and structure, for example, glucose or ribose-6-phosphate. Ribose concentration was measured for mammalian cell lysate and serum, which led to estimates of low-mM ribose in a HeLa cell line. This highlights the potential for using genetically encoded periplasmic binding proteins such as RBP to measure metabolites in different biological fluids, tissues, and physiologic states.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Kelsey L. Farenhem
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Madison A. Stringer
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Aaron R. Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
- Molecular and Cellular Oncogenesis Program, The Wistar
Institute, Philadelphia, PA 19104, USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Klass SH, Truxal AE, Fiala TA, Kelly J, Nguyen D, Finbloom J, Wemmer DE, Pines A, Francis MB. Rotaxane Probes for the Detection of Hydrogen Peroxide by 129 Xe HyperCEST NMR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:9948-9953. [PMID: 31004389 PMCID: PMC6660407 DOI: 10.1002/anie.201903045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 02/04/2023]
Abstract
The development of sensitive and chemically selective MRI contrast agents is imperative for the early detection and diagnosis of many diseases. Conventional responsive contrast agents used in 1 H MRI are impaired by the high abundance of protons in the body. 129 Xe hyperCEST NMR/MRI comprises a highly sensitive complement to traditional 1 H MRI because of its ability to report specific chemical environments. To date, the scope of responsive 129 Xe NMR contrast agents lacks breadth in the specific detection of small molecules, which are often important markers of disease. Herein, we report the synthesis and characterization of a rotaxane-based 129 Xe hyperCEST NMR contrast agent that can be turned on in response to H2 O2 , which is upregulated in several disease states. Added H2 O2 was detected by 129 Xe hyperCEST NMR spectroscopy in the low micromolar range, as well as H2 O2 produced by HEK 293T cells activated with tumor necrosis factor.
Collapse
Affiliation(s)
- Sarah H. Klass
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Ashley E. Truxal
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Tahoe A. Fiala
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Joseph Kelly
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Dang Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Joel Finbloom
- Department of Chemistry, University of California, Berkeley, California 94720
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, California 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720
| |
Collapse
|
9
|
Fernando A, Mako TL, Levenson AM, Cesana PT, Mendieta AM, Racicot JM, DeBoef B, Levine M. A polycationic pillar[5]arene for the binding and removal of organic toxicants from aqueous media. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashvin Fernando
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Teresa L. Mako
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Paul T. Cesana
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
10
|
Klass SH, Truxal AE, Fiala TA, Kelly J, Nguyen D, Finbloom JA, Wemmer DE, Pines A, Francis MB. Rotaxane Probes for the Detection of Hydrogen Peroxide by
129
Xe HyperCEST NMR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sarah H. Klass
- Department of Chemistry University of California Berkeley USA
| | | | - Tahoe A. Fiala
- Department of Chemistry University of California Berkeley USA
| | - Joseph Kelly
- Department of Chemistry University of California Berkeley USA
| | - Dang Nguyen
- Department of Chemistry University of California Berkeley USA
| | | | - David E. Wemmer
- Department of Chemistry University of California Berkeley USA
| | - Alexander Pines
- Department of Chemistry University of California Berkeley USA
- Materials Sciences Division Lawrence Berkeley National Laboratories Berkeley California 94720 USA
| | - Matthew B. Francis
- Department of Chemistry University of California Berkeley USA
- Materials Sciences Division Lawrence Berkeley National Laboratories Berkeley California 94720 USA
| |
Collapse
|
11
|
Brotin T, Jeanneau E, Berthault P, Léonce E, Pitrat D, Mulatier JC. Synthesis of Cryptophane-B: Crystal Structure and Study of Its Complex with Xenon. J Org Chem 2018; 83:14465-14471. [DOI: 10.1021/acs.joc.8b02246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thierry Brotin
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, 46 allée d’Italie, Lyon F69364, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université Lyon 1, 5 rue de la Doua, Villeurbanne 69100, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, Gif-sur-Yvette 91191, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, Gif-sur-Yvette 91191, France
| | - Delphine Pitrat
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, 46 allée d’Italie, Lyon F69364, France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, 46 allée d’Italie, Lyon F69364, France
| |
Collapse
|