1
|
Kaur N, Fischer M, Hitaishi P, Kumar S, Sharma VK, Ghosh SK, Gahlay GK, Scheidt HA, Mithu VS. How 1, n-Bis(3-alkylimidazolium-1-yl) Alkane Interacts with the Phospholipid Membrane and Impacts the Toxicity of Dicationic Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13803-13813. [PMID: 36321388 DOI: 10.1021/acs.langmuir.2c01956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ionic liquids based on doubly charged cations, often termed dicationic ionic liquids (DILs), offer robust physicochemical properties and low toxicity than conventional monocationic ionic liquids. In this design-based study, we used solid-state NMR spectroscopy to provide the interaction mechanism of two DILs, 1,n-bis(3-alkylimidazolium-1-yl) alkane dibromide ([C2n(C7-nIM)2]2+·2Br-, n = 1, 6), with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipid membranes, to explain the low toxicity of DILs toward HeLa, Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae cell lines. Dications with a short linker and long terminal chains cause substantial perturbation to the bilayer structure, making them more membrane permeabilizing, as shown by fluorescence-based dye leakage assays. The structural perturbation is even higher than [C12(MIM)]+ monocations, which carry a single 12-carbon long chain and exhibit a much higher membrane affinity, permeability, and cytotoxicity. These structural details are a crucial contribution to the design strategies aimed at harnessing the biological activity of ionic liquids.
Collapse
Affiliation(s)
- Navleen Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar143005, India
| | - Markus Fischer
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig04109, Germany
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Greater Noida, Uttar Pradesh201314, India
| | - Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar143005, India
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - Sajal Kumar Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Greater Noida, Uttar Pradesh201314, India
| | - Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar143005, India
| | - Holger A Scheidt
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig04109, Germany
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar143005, India
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen37077, Germany
| |
Collapse
|
2
|
Stibbe PC, Ianiski LB, Weiblen C, Maciel AF, Machado ML, da Silveira TL, Soares FAA, Santurio JM, Soares MP, Pereira DIB, Sangioni LA, de Avila Botton S. Mefenoxam and pyraclostrobin: toxicity and in vitro inhibitory activity against Pythium insidiosum. Lett Appl Microbiol 2022; 75:1383-1388. [PMID: 35971818 DOI: 10.1111/lam.13808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
The objective of this study to verify in vitro susceptibility of Pythium insidiosum against the agricultural fungicides mefenoxam and pyraclostrobin and evaluate toxicity of both compounds. Twenty-one P. insidiosum isolates were tested against mefenoxam and pyraclostrobin using the broth microdilution method. Minimum inhibitory and oomicidal concentrations for both compounds were established. Additionally, scanning electron microscopy (SEM) was performed on P. insidiosum hyphae treated with the sublethal concentration of each fungicide. The toxicity of the compounds was evaluated in vivo Caenorhabditis elegans model. The concentration to inhibit 100% of P. insidiosum growth ranged from 0.625 to 10 μg ml-1 for mefenoxam and from 0.019 to 5 μg ml-1 for pyraclostrobin. The SEM analysis revealed changes on the surface of the hyphae treated with the fungicides, suggesting possible damage caused by these compounds. There was no evidence of toxicity in vivo models. Mefenoxam and pyraclostrobin did not show toxicity at the doses evaluated and have inhibitory effects on the pathogenic oomycete P. insidiosum. However, further evaluations of their pharmacokinetics and toxicity in different animal species and possible pharmacological interactions are necessary to infer a possible use in the clinical management of pythiosis.
Collapse
Affiliation(s)
| | | | - Carla Weiblen
- Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Santiago, RS, Brasil
| | | | | | | | | | | | - Mauro Pereira Soares
- Universidade Federal de Pelotas (UFPel), Instituto de Biologia, Pelotas, RS, Brasil
| | | | | | | |
Collapse
|
3
|
Limana da Silveira T, Lopes Machado M, Bicca Obetine Baptista F, Farina Gonçalves D, Duarte Hartmann D, Marafiga Cordeiro L, Franzen da Silva A, Lenz Dalla Corte C, Aschner M, Antunes Soares FA. Caenorhabditis elegans as a model for studies on quinolinic acid-induced NMDAR-dependent glutamatergic disorders. Brain Res Bull 2021; 175:90-98. [PMID: 34271120 DOI: 10.1016/j.brainresbull.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
Quinolinic acid (QUIN) is an agonist of the neurotransmitter glutamate (Glu) capable of binding to N-methyl-D-aspartate receptors (NMDAR) increasing glutamatergic signaling. QUIN is known for being an endogenous neurotoxin, able to induce neurodegeneration. In Caenorhabditis elegans, the mechanism by which QUIN induces behavioral and metabolic toxicity has not been fully elucidated. The effects of QUIN on behavioral and metabolic parameters in nmr-1 and nmr-2 NMDA receptors in transgenic and wild-type (WT) worms were performed to decipher the pathway by which QUIN exerts its toxicity. QUIN increased locomotion parameters such as wavelength and movement amplitude medium, as well as speed and displacement, without modifying the number of body bends in an NMDAR-dependent-manner. QUIN increased the response time to the chemical stimulant 1-octanol, which is modulated by glutamatergic neurotransmission in the ASH neuron. Brood size increased after exposure to QUIN, dependent upon nmr-2/NMDA-receptor, with no change in lifespan. Oxygen consumption, mitochondrial membrane potential, and the flow of coupled and unbound electrons to ATP production were reduced by QUIN in wild-type animals, but did not alter citrate synthase activity, altering the functionality but the mitochondrial viability. Notably, QUIN modified fine locomotor and chemosensory behavioral parameters, as well as metabolic parameters, analogous to previously reported effects in mammals. Our results indicate that QUIN can be used as a neurotoxin to elicit glutamatergic dysfunction in C. elegans in a way analogous to other animal models.
Collapse
Affiliation(s)
- Tássia Limana da Silveira
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Marina Lopes Machado
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Obetine Baptista
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Débora Farina Gonçalves
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Diane Duarte Hartmann
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil; Universidade Regional do Noroeste do Estado do Rio Grande do Sul
| | - Larissa Marafiga Cordeiro
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Lenz Dalla Corte
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Felix Alexandre Antunes Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Kuhn BL, Kaminski TFA, Carvalho ÂR, Fuentefria AM, Johann BMBC, da Silva EE, Silveira GP, da Silveira TL, Soares FAA, Zanatta N, Frizzo CP. Antimicrobial and Toxicity Evaluation of Imidazolium-Based Dicationic Ionic Liquids with Dicarboxylate Anions. Pharmaceutics 2021; 13:pharmaceutics13050639. [PMID: 33947119 PMCID: PMC8145335 DOI: 10.3390/pharmaceutics13050639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
Imidazolium-based dicationic ILs (DILs) presenting antimicrobial activity and relatively low toxicity are highly desirable and are envisioned for use in live tissue to prevent bacterial or fungal infections. In this context, we present here DILs with dicarboxylate anions [Cn(MIM)2[Cn(MIM)2][CO2-(CH2)mCO2], in which n = 4, 6, 8, and 10, and m = 0, 1, 2, 3, 4, and 5. The results showed that DILs with an alkyl chain spacer of ten carbons were active against yeasts and the bacterial strains tested. However, most of the DILs were cytotoxic and toxic at 1 mM. By contrast, DILs with alkyl chains possessing less than ten carbons were active against some specific Candidas and bacteria (mainly S. aureus), and they showed moderate cytotoxicity. The best activity against Gram-positive bacteria was observed for [C4(MIM)2][Pim] toward MRSA. For the DILs described herein, their level of toxicity against C. elegans was lower than that of most of the mono- and dicationic IL analogs with other anions. Our results showed that the presence of carboxylate anions reduces the toxicity of DILs compared to DILs containing halide anions, which is particularly significant to the means of designing biologically active compounds in antimicrobial formulations.
Collapse
Affiliation(s)
- Bruna L. Kuhn
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (B.L.K.); (N.Z.)
| | - Taís F. A. Kaminski
- Laboratory of Applied Mycology, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90470-440, Brazil; (T.F.A.K.); (Â.R.C.); (A.M.F.)
| | - Ânderson R. Carvalho
- Laboratory of Applied Mycology, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90470-440, Brazil; (T.F.A.K.); (Â.R.C.); (A.M.F.)
| | - Alexandre M. Fuentefria
- Laboratory of Applied Mycology, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90470-440, Brazil; (T.F.A.K.); (Â.R.C.); (A.M.F.)
| | - Bianca M. B. C. Johann
- Postgraduate Program in Agricultural Microbiology and the Environment, Instituto de Ciências Básicas da Saúde-Campus Centro, Rua Sarmento Leite 500, Porto Alegre 90050-170, Brazil; (B.M.B.C.J.); (G.P.S.)
| | - Edilma E. da Silva
- Postgraduate Program in Chemistry, Instituto de Química-Campus Vale, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| | - Gustavo P. Silveira
- Postgraduate Program in Agricultural Microbiology and the Environment, Instituto de Ciências Básicas da Saúde-Campus Centro, Rua Sarmento Leite 500, Porto Alegre 90050-170, Brazil; (B.M.B.C.J.); (G.P.S.)
- Postgraduate Program in Chemistry, Instituto de Química-Campus Vale, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| | - Tássia L. da Silveira
- Departament of Biochemistry and Molecular Biology, Federal University of Santa Maria, Avenida Roraima 1000, Santa Maria 97105-900, Brazil; (T.L.d.S.); (F.A.A.S.)
| | - Félix A. A. Soares
- Departament of Biochemistry and Molecular Biology, Federal University of Santa Maria, Avenida Roraima 1000, Santa Maria 97105-900, Brazil; (T.L.d.S.); (F.A.A.S.)
| | - Nilo Zanatta
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (B.L.K.); (N.Z.)
| | - Clarissa P. Frizzo
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (B.L.K.); (N.Z.)
- Correspondence:
| |
Collapse
|
5
|
Zhang W, Zhou P, Liu W, Wang H, Wang X. Enhanced adsorption/extraction of five typical polycyclic aromatic hydrocarbons from meat samples using magnetic effervescent tablets composed of dicationic ionic liquids and NiFe2O4 nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Isa Ziembowicz F, de Freitas DV, Bender CR, dos Santos Salbego PR, Piccinin Frizzo C, Pinto Martins MA, Reichert JM, Santos Garcia IT, Kloster CL, Villetti MA. Effect of mono- and dicationic ionic liquids on the viscosity and thermogelation of methylcellulose in the semi-diluted regime. Carbohydr Polym 2019; 214:174-185. [DOI: 10.1016/j.carbpol.2019.02.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
|
7
|
Wei Y, Zhao Q, Wu Q, Zhang H, Kong W, Liang J, Yao J, Zhang J, Wang J. Efficient synthesis of polysaccharide with high selenium content mediated by imidazole-based acidic ionic liquids. Carbohydr Polym 2019; 203:157-166. [DOI: 10.1016/j.carbpol.2018.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
|
8
|
Guglielmero L, Mezzetta A, Guazzelli L, Pomelli CS, D'Andrea F, Chiappe C. Systematic Synthesis and Properties Evaluation of Dicationic Ionic Liquids, and a Glance Into a Potential New Field. Front Chem 2018; 6:612. [PMID: 30619821 PMCID: PMC6299102 DOI: 10.3389/fchem.2018.00612] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023] Open
Abstract
Dicationic ionic liquids (DILs), a subset of the ionic liquid (IL) family, have attracted growing interest in recent years, and the range of applications within which they are investigated is constantly expanding. However, data which allows structure to property correlation of a DIL is still limited, and thus selecting an appropriate salt to address a specific challenge can be problematic. In comparison to traditional ILs, DILs physico-chemical properties can be tuned by changing the length and type of spacer which connects the cationic heads as well as the type of cation. This in turn could give rise to symmetrical or asymmetrical DILs. In this work, a systematic study of a homogeneous class of 12 dibromide DILs and 12 di-carboxylate salts has been performed. The latter class of DILs were also compared to mono cation derivatives. The different traditional exchange methods to prepare carboxylate DILs have been evaluated and an insight into the drawbacks encountered is also presented. Prepared DILs were characterized (NMR, TGA, DSC) allowing the influence of the structure on their thermal stability to be understood. Most DILs were obtained as solid salts after careful drying. For some of these compounds, a new possible application was studied, namely their use as hydrogen bond acceptors (HBA) of deep eutectic mixtures, showing again some significant structural related effects.
Collapse
|