1
|
Maier S, Stöhr M. Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:950-956. [PMID: 34540518 PMCID: PMC8404214 DOI: 10.3762/bjnano.12.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sabine Maier
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
2
|
Jasper-Tönnies T, Gruber M, Ulrich S, Herges R, Berndt R. Coverage-Controlled Superstructures of C 3 -Symmetric Molecules: Honeycomb versus Hexagonal Tiling. Angew Chem Int Ed Engl 2020; 59:7008-7017. [PMID: 32106353 PMCID: PMC7216838 DOI: 10.1002/anie.202001383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/06/2022]
Abstract
The competition between honeycomb and hexagonal tiling of molecular units can lead to large honeycomb superstructures on surfaces. Such superstructures exhibit pores that may be used as 2D templates for functional guest molecules. Honeycomb superstructures of molecules that comprise a C3 symmetric platform on Au(111) and Ag(111) surfaces are presented. The superstructures cover nearly mesoscopic areas with unit cells containing up to 3000 molecules, more than an order of magnitude larger than previously reported. The unit cell size may be controlled by the coverage. A fairly general model was developed to describe the energetics of honeycomb superstructures built from C3 symmetric units. Based on three parameters that characterize two competing bonding arrangements, the model is consistent with the present experimental data and also reproduces various published results. The model identifies the relevant driving force, mostly related to geometric aspects, of the pattern formation.
Collapse
Affiliation(s)
- Torben Jasper-Tönnies
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Sandra Ulrich
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| |
Collapse
|
3
|
Jasper‐Tönnies T, Gruber M, Ulrich S, Herges R, Berndt R. Coverage‐Controlled Superstructures of
C
3
‐Symmetric Molecules: Honeycomb versus Hexagonal Tiling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Torben Jasper‐Tönnies
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| | - Sandra Ulrich
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität 24098 Kiel Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität 24098 Kiel Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| |
Collapse
|
4
|
He X, Zhang L, Chua R, Wong PKJ, Arramel A, Feng YP, Wang SJ, Chi D, Yang M, Huang YL, Wee ATS. Selective self-assembly of 2,3-diaminophenazine molecules on MoSe 2 mirror twin boundaries. Nat Commun 2019; 10:2847. [PMID: 31253803 PMCID: PMC6599086 DOI: 10.1038/s41467-019-10801-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
The control of the density and type of line defects on two-dimensional (2D) materials enable the development of new methods to tailor their physical and chemical properties. In particular, mirror twin boundaries (MTBs) on transition metal dichacogenides have attracted much interest due to their metallic state with charge density wave transition and spin-charge separation property. In this work, we demonstrate the self-assembly of 2,3-diaminophenazine (DAP) molecule porous structure with alternate L-type and T-type aggregated configurations on the MoSe2 hexagonal wagon-wheel pattern surface. This site-specific molecular self-assembly is attributed to the more chemically reactive metallic MTBs compared to the pristine semiconducting MoSe2 domains. First-principles calculations reveal that the active MTBs couple with amino groups in the DAP molecules facilitating the DAP assembly. Our results demonstrate the site-dependent electronic and chemical properties of MoSe2 monolayers, which can be exploited as a natural template to create ordered nanostructures.
Collapse
Affiliation(s)
- Xiaoyue He
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Lei Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Rebekah Chua
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Ping Kwan Johnny Wong
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, Singapore, 117546, Singapore
| | - Arramel Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Shi Jie Wang
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Dongzhi Chi
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Ming Yang
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore.
| | - Yu Li Huang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore.
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, Singapore, 117546, Singapore.
| |
Collapse
|
5
|
Forker R, Gruenewald M, Sojka F, Peuker J, Mueller P, Zwick C, Huempfner T, Meissner M, Fritz T. Fraternal twins: distinction between PbPc and SnPc by their switching behaviour in a scanning tunnelling microscope. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:134004. [PMID: 30729922 DOI: 10.1088/1361-648x/aafeae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this contribution, we compare the optical absorbance behaviour and the structural properties of lead(II)-phthalocyanine (PbPc) and tin(II)-phthalocyanine (SnPc) thin films. To this end, we employ a Ag(1 1 1) substrate terminated with a monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride constituting an internal interface whose main effect is an electronic decoupling of the phthalocyanine adlayer from the metal surface. As deduced from low-energy electron diffraction and scanning tunnelling microscopy (STM) measurements, the epitaxial relations and unit cell compositions of the prevailing PbPc monolayer and multilayer domains are confusingly similar to those of SnPc on PTCDA/Ag(1 1 1). However, SnPc and PbPc can be readily distinguished by their STM-induced switching behaviours: while the former is capable of reversible configurational changes, no effect on the latter could be achieved by us under comparable conditions. This corroborates earlier theoretical predictions and even renders the chemical identification of individual shuttlecock-shaped metal-phthalocyanines feasible.
Collapse
Affiliation(s)
- Roman Forker
- Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Huang YL, Zheng YJ, Song Z, Chi D, Wee ATS, Quek SY. The organic-2D transition metal dichalcogenide heterointerface. Chem Soc Rev 2018; 47:3241-3264. [PMID: 29651487 DOI: 10.1039/c8cs00159f] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the first isolation of graphene, new classes of two-dimensional (2D) materials have offered fascinating platforms for fundamental science and technology explorations at the nanometer scale. In particular, 2D transition metal dichalcogenides (TMD) such as MoS2 and WSe2 have been intensely investigated due to their unique electronic and optical properties, including tunable optical bandgaps, direct-indirect bandgap crossover, strong spin-orbit coupling, etc., for next-generation flexible nanoelectronics and nanophotonics applications. On the other hand, organics have always been excellent materials for flexible electronics. A plethora of organic molecules, including donors, acceptors, and photosensitive molecules, can be synthesized using low cost and scalable procedures. Marrying the fields of organics and 2D TMDs will bring benefits that are not present in either material alone, enabling even better, multifunctional flexible devices. Central to the realization of such devices is a fundamental understanding of the organic-2D TMD interface. Here, we review the organic-2D TMD interface from both chemical and physical perspectives. We discuss the current understanding of the interfacial interactions between the organic layers and the TMDs, as well as the energy level alignment at the interface, focusing in particular on surface charge transfer and electronic screening effects. Applications from the literature are discussed, especially in optoelectronics and p-n hetero- and homo-junctions. We conclude with an outlook on future scientific and device developments based on organic-2D TMD heterointerfaces.
Collapse
Affiliation(s)
- Yu Li Huang
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.
| | | | | | | | | | | |
Collapse
|