1
|
Ito S, Hirano K, Koyasu K, Wan XK, Wang QM, Tsukuda T. Resistance of a PdAu 12(8e) Core to Growth in Collision-Induced Sequential Reductive Elimination of (C≡CR) 2 from [PdAu 24(C≡CR) 18] 2. J Phys Chem Lett 2024; 15:11060-11066. [PMID: 39470462 DOI: 10.1021/acs.jpclett.4c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Previous studies have reported that [PdAu24(PAF)18]2- (PAF = 3,5-(CF3)2C6H3C≡C) with an icosahedral superatomic PdAu12(8e) core underwent collision-induced sequential reductive elimination (CISRE) of 1,3-diyne (PAF)2 ( J. Phys. Chem. C 2020, 124, 19119). The most likely scenario after the CISRE of (PAF)2 is the growth of the PdAu12(8e) core via the fusion of the Au(0) atoms produced from the Au2(PAF)3 units on the core surface. Contrary to expectation, anion photoelectron spectroscopy and theoretical calculations regarding the CISRE products [PdAu24(PAF)18-2n]2- (n = 1-6) revealed that the electronically closed PdAu12(8e) core does not grow to a single superatom with (8 + 2n)e but assembles with Au2(2e) units. Characterization of the CISRE products of other alkynyl-protected Au clusters suggested that even the non-superatomic Au17(8e) core was resistant to growth due probably to rigidification by PA ligands. We propose that there is a kinetic bottleneck in the growth process of protected Au clusters at the stage where they are electronically closed and/or lose their structural fluxionality by ligation.
Collapse
Affiliation(s)
- Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koto Hirano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xian-Kai Wan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P. R. China
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Wijesinghe KH, Hood C, Mattern D, Angel LA, Dass A. Ion mobility-tandem mass spectrometry of bulky tert-butyl thiol ligated gold nanoparticles. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e4998. [PMID: 38263883 DOI: 10.1002/jms.4998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/25/2024]
Abstract
Gold nanoparticles (AuNPs) synthesized in the 1-3 nm range have a specific number of gold core atoms and outer protecting ligands. They have become one of the "hot topics" in recent decades because of their interesting physical and chemical properties. The characterization of their structures is usually achieved by crystal X-ray diffraction although the structures of some AuNPs remain unknown because they have not been successfully crystallized. An alternative method for studying the structure of AuNPs is electrospray ionization-ion mobility-tandem mass spectrometry (ESI-IM-MSMS). This research evaluated how effectively ESI-IM-MSMS using the commercially available Waters Synapt XS instrument yielded useful structural information from two AuNPs; Au23 (S-tBu)16 and Au30 (S-tBu)18 . The study used the maximum range of available collision energies along with ion mobility separation to measure the energy-dependence of the product ions and their drift times which is a measure of their spatial size. For Au23 (S-tBu)16 , the dissociation gave the masses of the outer protecting monomeric [RS-Au-SR] and trimeric [SR-Au-SR-Au-SR-Au-SR] staples where R = tBu, and complete dissociation of the outer layer Au and tBu groups to reveal the Au15 S8 core. For Au30 (S-tBu)18 , the dissociation products was primarily through the loss of the partial ligands S-tBu and tBu from the outer protecting layer and the loss of single Au4 (S-tBu)4 unit. These results showed the that ESI-IM-MSMS analysis of the smaller Au23 (S-tBu)16 gave information on all it major structural components whereas for Au30 (S-tBu)18 , the overall structural information was limited to the ligands of the outer layer.
Collapse
Affiliation(s)
- Kalpani H Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Christopher Hood
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Daniell Mattern
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Laurence A Angel
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
3
|
Zhang J, Wang HD, Zhang Y, Li Z, Yang D, Zhang DH, Tsukuda T, Li G. A Revealing Insight into Gold Cluster Photocatalysts: Visible versus (Vacuum) Ultraviolet Light. J Phys Chem Lett 2023; 14:4179-4184. [PMID: 37114860 DOI: 10.1021/acs.jpclett.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
[Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (Au25) supported on TiO2 (P25) exhibited distinct photocatalytic behaviors in the oxidation of amines using visible or ultraviolet light. The activity under visible light (455 nm) was superior to that under ultraviolet light. To gain insight into the origin of this difference, we investigated the photoreaction pathways of Au25 isolated in the gas phase upon irradiation with a pulsed laser with wavelengths of 455, 193, and 154 nm. High-resolution mass spectrometry revealed photon energy-dependent pathways for Au25: dissociation of the PPh3 ligands and PPh3AuCl units at 455 nm, dissociation into small [AunSm]+ ions (n = 3-20; m = 0-4) at 193 nm, and ionization affording the triply charged state at 154 nm. These results were substantiated by density functional theory simulations. On the basis of these results, we proposed that the inferior photocatalytic activity of Au25/P25 under ultraviolet light is mainly due to the poor photostability of Au25.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Heng-Ding Wang
- State Key Laboratory Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongyuan Yang
- State Key Laboratory Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Dong J, Robinson JR, Gao ZH, Wang LS. Selective Semihydrogenation of Polarized Alkynes by a Gold Hydride Nanocluster. J Am Chem Soc 2022; 144:12501-12509. [PMID: 35771170 DOI: 10.1021/jacs.2c05046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydridic hydrogen in nanogold catalysts has long been postulated as an important intermediate in hydrogenation reactions, but it has not been directly observed. Here, we report the synthesis of a new undecagold cluster with a bidentate phosphine ligand. The chelating effects of the bidentate ligand result in a more symmetric Au11 core with two labile Cl- ligands that can exchange with BH4-, leading to a novel undecagold hydride cluster. The new hydride cluster is discovered to readily undergo hydroauration reaction with alkynes containing electron-withdrawing groups, forming key gold-alkenyl semihydrogenation intermediates, which can be efficiently and selectively converted to Z-alkenes under acidic conditions. All key reaction intermediates are isolated and characterized, providing atomic-level insights into the active sites and mechanisms of semihydrogenation reactions catalyzed by gold-based nanomaterials. The hydridic hydrogen in the undecagold cluster is found to be the key to prevent over hydrogenation of alkenes to alkanes. The current study provides fundamental insights into hydrogenation chemistry enabled by gold-based nanomaterials and may lead to the development of efficient catalysts for selective semihydrogenation or functionalization of alkynes.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ze-Hua Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
5
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
6
|
Filho MS, Massi L, Millet A, Michel D, Moussa W, Ronco C, Benhida R. Energy-resolved mass spectrometry to investigate nucleobase triplexes – a study applied to triplex-forming artificial nucleobases. NEW J CHEM 2022. [DOI: 10.1039/d2nj00665k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper discloses the use of an energy-resolved mass spectrometric-based approach to assess the stabilities of base triplexes encompassing artificial nucleobases by using variable energy collision-induced dissociation.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Lionel Massi
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Antoine Millet
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Dylan Michel
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Wafa Moussa
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
- Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco
| |
Collapse
|
7
|
Shinjo N, Takano S, Tsukuda T. Effects of
π‐Electron
Systems on Optical Activity of Au
11
Clusters Protected by Chiral Diphosphines. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoaki Shinjo
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Shinjiro Takano
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University, Katsura Kyoto 615‐8520 Japan
| |
Collapse
|
8
|
Sato Y, Yao H. Mixed-diphosphine-protected chiral undecagold clusters Au 11( S, S-DIOP) 4( rac-/ R-/ S-BINAP): effect of the handedness of BINAP on their chiroptical responses. Phys Chem Chem Phys 2021; 23:16847-16854. [PMID: 34328157 DOI: 10.1039/d1cp02106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report a preference of homochiral-type ligation of BINAP that produces SS-type ligand assembly onto the Au11 clusters protected by diphosphine S,S-DIOP. The Au11 clusters synthesized and isolated are Au11(S,S-DIOP)4(rac-/R-/S-BINAP), and their optical/chiroptical responses are characterized. Absorption spectra of these Au11 clusters are almost identical to each other, but their CD profiles are dependent on the handedness of BINAP. In Au11(S,S-DIOP)4(rac-BINAP), the yield of S-BINAP or R-BINAP coordination is roughly comparable, but we found a small but distinctive preference in the S-BINAP ligation; that is, homochiral-type (SS-type) ligand assembly formation. Quantum chemical calculations for simplified model clusters suggest equal contributions of S- and R-form BINAP coordination. The experimentally-observed preference of homochiral-type ligation can then be due to that of the whole ligand structures and assemblies involving interligand interactions. Chiral sorting and amplification processes through the assembly control of homochirality or heterochirality are of primary importance for the development of enantioselective reactions, so we anticipate this finding will contribute to further understanding of such processes based on various metal clusters with chiral ligands.
Collapse
Affiliation(s)
- Yasuhiko Sato
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | | |
Collapse
|
9
|
Koyasu K, Tsukuda T. Gas-phase studies of chemically synthesized Au and Ag clusters. J Chem Phys 2021; 154:140901. [DOI: 10.1063/5.0041812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520,
Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520,
Japan
| |
Collapse
|
10
|
Ma X, Tang Y, Ma G, Qin L, Tang Z. Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: recent advances, grand challenges, and great opportunities. NANOSCALE 2021; 13:602-614. [PMID: 33410856 DOI: 10.1039/d0nr07499c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the past decade, atomically precise coinage metal nanoclusters have been a subject of major interest in nanoscience and nanotechnology because of their determined compositions and well-defined molecular structures, which are beneficial for establishing structure-property relationships. Recently ligand engineering has been extended to alkynyl molecules. Homoleptic alkynyl-protected Au nanoclusters (Au NCs) have emerged as a hotspot of research interest, mainly due to their unique optical properties, molecular configuration, and catalytic functionalities, and more importantly, they are used as a counterpart object for fundamental study to compare with the well-established thiolate Au NCs. In this review, we first summarize the recently reported various controllable synthetic strategies for atomically precise homoleptic-alkynyl-protected Au NCs, with particular emphasis on the ligand exchange method, direct reduction of the precursor, one-pot synthesis, and the synchronous nucleation and passivation strategy. After that, we switch our focus to the formation mechanism and structure evolution process of homoleptic alkynyl-protected Au NCs, where Au144(PA)60 and Au36(PA)24 (PA = phenylacetylide) are given as examples, along with the prediction of the possible formation mechanism of some other cluster molecules. In the end of this review, the outlook and perspective of this rapidly developing field including grand challenges and great opportunities are discussed. This review can stimulate more research efforts towards developing new synthetic strategies to enrich the limited examples and unravel the formation/growth mechanism of homoleptic alkynyl-protected Au NCs.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China.
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China. and Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
11
|
Hewitt MA, Hernández H, Johnson GE. ESI-MS Identification of the Cationic Phosphine-Ligated Gold Clusters Au 1-22: Insight into the Gold-Ligand Ratio and Abundance of Larger Clusters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:237-246. [PMID: 33119279 DOI: 10.1021/jasms.0c00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Triphenylphosphine (PPh3)-ligated gold nanoclusters are valuable for a number of potential applications due to their relative ease of synthesis and usefulness in forming advanced cluster architectures. While previous studies have reported cationic PPh3-ligated gold clusters with core sizes of Au1-4, Au6-11, and Au13-14, there has not been definitive identification by mass spectrometry of many larger clusters in the Au12-25 range. Herein, we survey a polydisperse solution of cationic PPh3-ligated gold clusters using high-mass-resolution (M/ΔM = 60,000) electrospray ionization mass spectrometry (ESI-MS). To improve the sensitivity and mass resolution of larger clusters for unambiguous identification, we increased the number of scan averages and reduced the range of mass collection windows to 200 m/z, thereby mitigating potential mass and ion abundance bias resulting from smaller "building block" gold clusters that are present in much higher abundance in solution. In addition to the previously reported clusters, we identify several new species including Au5(PPh3)5+, Au12(PPh3)9HCl2+, Au15(PPh3)9Cl2+, Au16(PPh3)10Cl22+, Au17(PPh3)113+, Au18(PPh3)102+, Au19(PPh3)10Cl2+, Au20(PPh3)12H33+, Au21(PPh3)10Cl2+, and Au22(PPh3)10Cl22+, indicating that a full range of clusters between Au1-22 may be observed in a single polydisperse solution. Considering all of the clusters observed, our findings provide evidence that the Au12-14 size range is a critical transition point in cluster nucleation. While smaller clusters exhibit a 1:1 gold-to-ligand ratio, larger clusters (beginning Au12-14) feature additional gold atoms without an equal number of accompanying ligands. Our results support previous evidence in the literature indicating that the "magic number" icosahedral Au13 geometry is the smallest cluster size where a ligand-less central gold atom is coordinated by a complete shell of 12 surrounding ligated gold atoms, thereby creating a stable "one-shell" cluster. Furthermore, our findings reinforce growing evidence that ligands may be used to actively direct gold cluster size and abundance during synthesis. While for PPh3-ligated systems the most abundant species are Au6-9 clusters, we find that for related methyldiphenylphosphine (PPh2Me) and dimethylphenylphosphine (PPhMe2)-ligated systems the most abundant cluster sizes are Au10-11 and Au12-14, respectively. Together, we demonstrate that reducing the range of m/z collection windows and increasing the number of scan averages dramatically improves instrument sensitivity for cationic gold clusters, enabling thorough characterization of polydisperse solutions that is not possible using conventional techniques.
Collapse
Affiliation(s)
- Michael A Hewitt
- Department of Chemistry, Grinnell College, 1116 Eighth Avenue, Grinnell, Iowa 50112, United States
| | - Heriberto Hernández
- Department of Chemistry, Grinnell College, 1116 Eighth Avenue, Grinnell, Iowa 50112, United States
| | - Grant E Johnson
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Gao ZH, Dong J, Zhang QF, Wang LS. Halogen effects on the electronic and optical properties of Au 13 nanoclusters. NANOSCALE ADVANCES 2020; 2:4902-4907. [PMID: 36132903 PMCID: PMC9419307 DOI: 10.1039/d0na00662a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 05/07/2023]
Abstract
We report an experimental and theoretical investigation of the electronic and optical properties of a series of icosahedral Au13 nanoclusters, protected using different halogen ligands (Cl, Br, and I), as well as 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All three clusters are comprised of the same Au13 kernel with two halogens coordinated to the poles of the icosahedral cluster along with five dppe ligands. UV-vis absorption spectra indicate a systematic red shift from Cl to Br to I, as well as a sudden enhancement of the second excitonic peak for the I-coordinated cluster. Density functional theory (DFT) calculations suggest that all clusters possess a wide HOMO-LUMO energy gap of ∼1.79 eV and are used to assign the first two excitonic bands. Frontier orbital analyses reveal several HOMO → LUMO transitions involving halogen-to-metal charge transfers. For the I-coordinated cluster, more complicated I-to-metal charge transfers give rise to different excitation features observed experimentally. The current findings show that halogen ligands play important roles in the electronic structures of gold clusters and can be utilized to tune the optical properties of the clusters.
Collapse
Affiliation(s)
- Ze-Hua Gao
- Department of Chemistry, Brown University Providence RI 02912 USA
| | - Jia Dong
- Department of Chemistry, Brown University Providence RI 02912 USA
| | - Qian-Fan Zhang
- Department of Chemistry, Brown University Providence RI 02912 USA
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University Providence RI 02912 USA
| |
Collapse
|
13
|
Tian XF, Ji BQ, Feng L, Sheng K, Su YM, Jagodič M, Jagličić Z, Tung CH, Sun D. Self-assembly of a nonanuclear Ni II cluster via atmospheric CO 2 fixation: synthesis, structure, collision-induced dissociation mass spectrometry and magnetic property. Dalton Trans 2020; 49:10977-10982. [PMID: 32725011 DOI: 10.1039/d0dt01573c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel nonanuclear nickel(ii) cluster identified as [Ni9(OH)6(CO3)2(ba)8(Hdmpz)6(DMF)2]·EtOH·2DMF (SD/Ni9a, Hba = benzoic acid, Hdmpz = 3,5-dimethyl-1H-pyrazole) is successfully constructed from mixed ligands. The single-crystal X-ray diffraction (SCXRD) structural analysis confirms the composition and reveals the "drum-like" inner core structure surrounded by ba- and DMF. Six Hdmpz ligands in their neutral form further sandwich the "drum" up and down, and is hydrogen bonded with two carbonate anions that are derived from the atmospheric CO2 with the help of Et3N. Electrospray ionization mass spectrometry (ESI-MS) reveals that the SD/Ni9a maintains an intact core in the solution with a slight exchange of outer ligands. Detailed collision-induced dissociation (CID) experiments reveal the collision energy (CE)-promoted ligand loss and exchange between ba- and Hdmpz. Furthermore, the magnetic study shows that there is no interaction between the Ni centers at room temperature, whereas the ferromagnetic coupling between the Ni centers is found with an S = 3 spin ground state of the cluster at low temperature. Moreover, the UV-vis spectrum and the photocurrent response measurements show its good optical properties with an indirect bandgap of about 2.35 eV and fast current response upon visible light irradiation.
Collapse
Affiliation(s)
- Xue-Fei Tian
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Bao-Qian Ji
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Lei Feng
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Kai Sheng
- School of Aeronautics, Shandong Jiaotong University, Jinan, 250037, People's Republic of China.
| | - Yan-Min Su
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Marko Jagodič
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia.
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
14
|
Truttmann V, Herzig C, Illes I, Limbeck A, Pittenauer E, Stöger-Pollach M, Allmaier G, Bürgi T, Barrabés N, Rupprechter G. Ligand engineering of immobilized nanoclusters on surfaces: ligand exchange reactions with supported Au 11(PPh 3) 7Br 3. NANOSCALE 2020; 12:12809-12816. [PMID: 32319978 DOI: 10.1039/c9nr10353h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The properties of gold nanoclusters, apart from being size-dependent, are strongly related to the nature of the protecting ligand. Ligand exchange on Au nanoclusters has been proven to be a powerful tool for tuning their properties, but has so far been limited to dissolved clusters in solution. By supporting the clusters previously functionalized in solution, it is uncertain that the functionality is still accessible once the cluster is on the surface. This may be overcome by introducing the desired functionality by ligand exchange after the cluster deposition on the support material. We herein report the first successful ligand exchange on supported (immobilized) Au11 nanoclusters. Dropcast films of Au11(PPh3)7Br3 on planar oxide surfaces were shown to react with thiol ligands, resulting in clusters with a mixed ligand shell, with both phosphines and thiolates being present. Laser ablation inductively coupled plasma mass spectrometry and infrared spectroscopy confirmed that the exchange just takes place on the cluster dropcast. Contrary to systems in solution, the size of the clusters did not increase during ligand exchange. Different structures/compounds were formed depending on the nature of the incoming ligand. The feasibility to extend ligand engineering to supported nanoclusters is proven and it may allow controlled nanocluster functionalization.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Christopher Herzig
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Ivonne Illes
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Michael Stöger-Pollach
- University Service Center for Transmission Electron Microscopy (USTEM), Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Noelia Barrabés
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Günther Rupprechter
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| |
Collapse
|
15
|
Shen H, Selenius E, Ruan P, Li X, Yuan P, Lopez‐Estrada O, Malola S, Lin S, Teo BK, Häkkinen H, Zheng N. Solubility‐Driven Isolation of a Metastable Nonagold Cluster with Body‐Centered Cubic Structure. Chemistry 2020; 26:8465-8470. [DOI: 10.1002/chem.202001753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Elli Selenius
- Departments of Physics and ChemistryNanoscience CenterUniversity of Jyväskylä 40014 Jyväskylä Finland
| | - Pengpeng Ruan
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Xihua Li
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Peng Yuan
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Omar Lopez‐Estrada
- Departments of Physics and ChemistryNanoscience CenterUniversity of Jyväskylä 40014 Jyväskylä Finland
| | - Sami Malola
- Departments of Physics and ChemistryNanoscience CenterUniversity of Jyväskylä 40014 Jyväskylä Finland
| | - Shuichao Lin
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Hannu Häkkinen
- Departments of Physics and ChemistryNanoscience CenterUniversity of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials andNational & Local Joint Engineering Research Center for, Preparation Technology of NanomaterialsCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| |
Collapse
|
16
|
Howard-Fabretto L, Andersson GG. Metal Clusters on Semiconductor Surfaces and Application in Catalysis with a Focus on Au and Ru. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904122. [PMID: 31854037 DOI: 10.1002/adma.201904122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Metal clusters typically consist of two to a few hundred atoms and have unique properties that change with the type and number of atoms that form the cluster. Metal clusters can be generated with a precise number of atoms, and therefore have specific size, shape, and electronic structures. When metal clusters are deposited onto a substrate, their shape and electronic structure depend on the interaction with the substrate surface and thus depend on the properties of both the clusters and those of the substrate. Deposited metal clusters have discrete, individual electron energy levels that differ from the electron energy levels in the constituting individual atoms, isolated clusters, and the respective bulk material. The properties of clusters with a focus on Au and Ru, the methods to generate metal clusters, and the methods of deposition of clusters onto substrate surfaces are covered. The properties of cluster-modified surfaces are important for their application. The main application covered here is catalysis, and the methods for characterization of the cluster-modified surfaces are described.
Collapse
Affiliation(s)
- Liam Howard-Fabretto
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Gunther G Andersson
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
17
|
Tasaka Y, Nakamura K, Malola S, Hirata K, Kim K, Koyasu K, Häkkinen H, Tsukuda T. Electron Binding in a Superatom with a Repulsive Coulomb Barrier: The Case of [Ag 44(SC 6H 3F 2) 30] 4- in the Gas Phase. J Phys Chem Lett 2020; 11:3069-3074. [PMID: 32233374 DOI: 10.1021/acs.jpclett.0c00786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electron binding mechanism in [Ag44(SC6H3F2)30]4- (SC6H3F2 = 3,4-difluorobenzenethiolate) tetra-anion was studied by photoelectron spectroscopy (PES), collision-induced dissociation mass spectrometry (CID-MS), and density functional theory (DFT) computations. PES showed that [Ag44(SC6H3F2)30]4- is energetically metastable with respect to electron autodetachment {[Ag44(SC6H3F2)30]3- + e-} and features a repulsive Coulomb barrier (RCB) with a height of 2.7 eV. However, CID-MS revealed that [Ag44(SC6H3F2)30]4- does not release an electron upon collisional excitation but undergoes dissociation. DFT computations performed on the known structure of [Ag44(SC6H3F2)30]4- confirmed the negative adiabatic electron affinity of [Ag44(SC6H3F2)30]3- and interpreted the experimental PE spectrum by taking into account tunneling electron photodetachment through the RCB.
Collapse
Affiliation(s)
- Yuriko Tasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsunosuke Nakamura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Keisuke Hirata
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuenhee Kim
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
18
|
Liu YN, Hou JL, Wang Z, Gupta RK, Jagličić Z, Jagodič M, Wang WG, Tung CH, Sun D. An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorg Chem 2020; 59:5683-5693. [DOI: 10.1021/acs.inorgchem.0c00449] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ya-Nan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Jin-Le Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zvonko Jagličić
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, Ljubljana 1000, Slovenia
| | - Marko Jagodič
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, Ljubljana 1000, Slovenia
| | - Wen-Guang Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| |
Collapse
|
19
|
Hirata K, Tomihara R, Kim K, Koyasu K, Tsukuda T. Characterization of chemically modified gold and silver clusters in gas phase. Phys Chem Chem Phys 2019; 21:17463-17474. [PMID: 31363731 DOI: 10.1039/c9cp02622c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atomically precise Au and Ag clusters protected by organic ligands can be viewed as chemically modified Au/Ag superatoms and have attracted interest as promising building units of functional materials and ideal platforms for studying the size-dependent evolution of structures and properties. Their structures, stability, and physicochemical properties have been characterized in solution and solid (or crystalline) phases by various methods conventionally used in materials science. However, novel and complementary information on their intrinsic stability and structures can be obtained by applying a variety of gas-phase methods, including mass spectrometry, ion mobility mass spectrometry, collision- or surface-induced dissociation mass spectrometry, photoelectron spectroscopy, and photodissociation mass spectrometry, to the chemically modified Au/Ag superatoms isolated in the gas phase. This perspective describes our recent efforts in the gas-phase studies on chemically synthesized Au/Ag superatoms.
Collapse
Affiliation(s)
- Keisuke Hirata
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
20
|
Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev 2019; 48:2422-2457. [PMID: 30838373 DOI: 10.1039/c8cs00800k] [Citation(s) in RCA: 559] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, China.
| | | |
Collapse
|
21
|
Bertorelle F, Russier-Antoine I, Comby-Zerbino C, Chirot F, Dugourd P, Brevet PF, Antoine R. Isomeric Effect of Mercaptobenzoic Acids on the Synthesis, Stability, and Optical Properties of Au 25(MBA) 18 Nanoclusters. ACS OMEGA 2018; 3:15635-15642. [PMID: 31458220 PMCID: PMC6643454 DOI: 10.1021/acsomega.8b02615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
We report a simple size focusing, two-step "bottom-up" protocol to prepare water-soluble Au25(MBA)18 nanoclusters, using the three isomers of mercaptobenzoic acids (p/m/o-MBA) as capping ligands and Me3NBH3 as a mild reducing agent. The relative stability of the gas-phase multiply deprotonated Au25(MBA)18 ions was investigated by collision-induced dissociation. This permitted us to evaluate the possible isomeric effect on the Au-S interfacial bond stress. We also investigated their optical properties. The absorption spectra of Au25(MBA)18 isomers were very similar and showed bands at 690, 470, and 430 nm. For all Au25(MBA)18 isomeric clusters, no measurable one-photon excited fluorescence under UV-vis light was found, in neither solid- nor solution-state. The two-photon excited emission spectra and first hyperpolarizabilities of the clusters were also determined. The results are discussed in terms of the possible isomeric effect on excitations within the metal core and the possibility of charge transfer excitations from the ligands to the metal nanocluster.
Collapse
Affiliation(s)
- Franck Bertorelle
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Isabelle Russier-Antoine
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Clothilde Comby-Zerbino
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Fabien Chirot
- Univ
Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon,
Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Philippe Dugourd
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Pierre-François Brevet
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Rodolphe Antoine
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
- E-mail: (R.A.)
| |
Collapse
|