1
|
Song H, Kostrhunova H, Cervinka J, Macpherson J, Malina J, Rajan T, Phillips R, Postings M, Shepherd S, Zhang X, Brabec V, Rogers NJ, Scott P. Dicobalt(ii) helices kill colon cancer cells via enantiomer-specific mechanisms; DNA damage or microtubule disruption. Chem Sci 2024; 15:11029-11037. [PMID: 39027295 PMCID: PMC11253168 DOI: 10.1039/d4sc02541e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Highly diastereoselective self-assembly reactions give both enantiomers (Λ and Δ) of anti-parallel triple-stranded bimetallic Co(ii) and Co(iii) cationic helices, without the need for resolution; the first such reaction for Co. The complexes are water soluble and stable, even in the case of Co(ii). Studies in a range of cancer and healthy cell lines indicate high activity and selectivity, and substantial differences between enantiomers. The oxidation state has little effect, and correspondingly, Co(iii) compounds are reduced to Co(ii) e.g. by glutathione. In HCT116 colon cancer cells the Λ enantiomer induces dose-dependent G2-M arrest in the cell cycle and disrupts microtubule architectures. This Co(ii) Λ enantiomer is ca. five times more potent than the isostructural Fe(ii) compound. Since the measured cellular uptakes are similar this implies a higher affinity of the Co system for the intracellular target(s); while the two systems are isostructural they have substantially different charge distributions as shown by calculated hydrophobicity maps. In contrast to the Λ enantiomer, Δ-Co(ii) induces G1 arrest in HCT116 cells, efficiently inhibits the topoisomerase I-catalyzed relaxation of supercoiled plasmid DNA, and, unlike the isostructural Fe(ii) system, causes DNA damage. It thus seems very likely that redox chemistry plays a role in the latter.
Collapse
Affiliation(s)
- Hualong Song
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Centre of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
| | - Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
- Faculty of Science, Department of Biochemistry, Masaryk University Brno Czech Republic
| | - Julie Macpherson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
| | - Teena Rajan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Roger Phillips
- Department of Pharmacy, University of Huddersfield Huddersfield HD1 3DH UK
| | - Miles Postings
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Samantha Shepherd
- Department of Pharmacy, University of Huddersfield Huddersfield HD1 3DH UK
| | - Xuejian Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
- Department of Biophysics, Palacky University Olomouc Czech Republic
| | - Nicola J Rogers
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Peter Scott
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
2
|
Ajayi T, Lough AJ, Morris RH. Mechanochemical Synthesis of Chromium(III) Complexes Containing Bidentate PN and Tridentate P-NH-P and P-NH-P' Ligands. ACS OMEGA 2024; 9:19690-19699. [PMID: 38708235 PMCID: PMC11064035 DOI: 10.1021/acsomega.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Chromium(III) complexes bearing bidentate {NH2(CH2)2PPh2: PN, (S,S)-[NH2(CHPh)2PPh2]: P'N} and tridentate [Ph2P(CH2)2N(H)(CH2)2PPh2: P-NH-P, (S,S)-(iPr)2PCH2CH2N(H)CH(Ph)CH(Ph)PPh2: P-NH-P'] ligands have been synthesized using a mechanochemical approach. The complexes {cis-[Cr(PN)Cl2]Cl (1), cis-[Cr(P'N)Cl2]Cl (2), mer-Cr(P-NH-P)Cl3 (3), and mer-Cr(P-NH-P')Cl3 (4)} were obtained in high yield (95-97%) via the grinding of the respective ligands andthe solid Cr(III) ion precursor [CrCl3(THF)3] with the aid of a pestle and mortar, followed by recrystallization in acetonitrile. The isolated complexes are high spin. A single-crystal X-ray diffraction study of 2 revealed a cationic chromium complex with two P'N ligands in a cis configuration with P' trans to P' with chloride as the counteranion. The X-ray study of 4 shows a neutral Cr(III) complex with the P-NH-P' ligand in a mer configuration. The difference in molecular structures and bulkiness of the ligands influence the electronic, magnetic, and electrochemical properties of the complexes as exhibited by the bathochromic shifts in the electronic absorption peaks of the complexes and the relative increase in the magnetic moment of 3 (4.19 μβ) and 4 (4.15 μβ) above the spin only value (3.88 μβ) for a d3 electronic configuration. Complexes 1-4 were found to be inactive in the hydrogenation of an aldimine [(E)-1-(4-fluorophenyl)-N-phenylmethanimine] under a variety of activating conditions. The addition of magnesium and trimethylsilyl chloride in THF did cause hydrogenation at room temperature, but this occurred even in the absence of the chromium complex. The hydrogen in the amine product came from the THF solvent in this novel reaction, as determined by deuterium incorporation into the product when deuterated THF was used.
Collapse
Affiliation(s)
- Tomilola
J. Ajayi
- Department of Chemistry, University
of Toronto, 80 Saint George Street, Toronto M5S3H6, Ontario, Canada
| | - Alan J. Lough
- Department of Chemistry, University
of Toronto, 80 Saint George Street, Toronto M5S3H6, Ontario, Canada
| | - Robert H. Morris
- Department of Chemistry, University
of Toronto, 80 Saint George Street, Toronto M5S3H6, Ontario, Canada
| |
Collapse
|
3
|
Jesse KA, Abad SD, Studvick C, Andrade GA, Maurya S, Scott BL, Mukundan R, Popov IA, Davis BL. Impact of Pendent Ammonium Groups on Solubility and Cycling Charge Carrier Performance in Nonaqueous Redox Flow Batteries. Inorg Chem 2023; 62:19218-19229. [PMID: 37948607 DOI: 10.1021/acs.inorgchem.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The synthesis, characterization, electrochemical performance, and theoretical modeling of two base-metal charge carrier complexes incorporating a pendent quaternary ammonium group, [Ni(bppn-Me3)][BF4], 3', and [Fe(PyTRENMe)][OTf]3, 4', are described. Both complexes were produced in high yield and fully characterized using NMR, IR, and UV-vis spectroscopies as well as elemental analysis and single-crystal X-ray crystallography. The solubility of 3' in acetonitrile showed a 283% improvement over its neutral precursor, whereas the solubility of complex 4' was effectively unchanged. Cyclic voltammetry indicates an ∼0.1 V positive shift for all waves, with some changes in reversibility depending on the wave. Bulk electrochemical cycling demonstrates that both 3' and 4' can utilize the second more negative wave to a degree, whereas 4' ceases to have a reversible positive wave. Flow cell testing of 3' and 4' with Fc as the posolyte reveals little improvement to the cycling performance of 3' compared with its parent complex, whereas 4' exhibits reductions in capacity decay when cycling either negative wave. Postcycling CVs indicate that crossover is the likely source of capacity loss in complexes 3, 3', and 4' because there is little change in the CV trace. Density functional theory calculations indicate that the ammonium group lowers the HOMO energy in 3' and 4', which may impart stability to cycling negative waves while making positive waves less accessible. Overall, the incorporation of a positively charged species can improve solubility, stored electron density, and capacity decay depending on the complex, features critical to high energy density redox flow battery performance.
Collapse
Affiliation(s)
- Kate A Jesse
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergio Diaz Abad
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chad Studvick
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Gabriel A Andrade
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sandip Maurya
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rangachary Mukundan
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ivan A Popov
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Benjamin L Davis
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Zhang B, Schrage BR, Frkonja-Kuczin A, Gaire S, Popov IA, Ziegler CJ, Boika A. Zwitterionic Ferrocenes: An Approach for Redox Flow Battery (RFB) Catholytes. Inorg Chem 2022; 61:8117-8120. [PMID: 35584531 DOI: 10.1021/acs.inorgchem.2c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we present two new ferrocene compounds Fc3 and Fc4 with, respectively, propyl and butyl zwitterionic side chains. These compounds are highly soluble in water (0.66 M for Fc3 and 2.01 M for Fc4). When paired with anthraquinone-2,7-disulfonate as the anolyte, these zwitterionic ferrocenes exhibit excellent performance under neutral aqueous conditions. Voltage and energy efficiencies were ca. 88%, and the Coulombic efficiency was over 99% for both high-concentration redox flow batteries. We observed a difference in stability between the lengths of the zwitterionic chains, with Fc4 showing higher stability than Fc3, and the capacity decreased by ∼5% at the end of 20 cycles (∼1% per day). Density functional theory calculations revealed striking differences in the conformational properties between Fc3 and Fc4, with Fc4 retaining a linear structure of the side chain in solution, while Fc3 favored both linear and curved geometries.
Collapse
Affiliation(s)
- Baosen Zhang
- Department of Chemistry, University of Akron, Akron Ohio 44325-3601, United States
| | - Briana R Schrage
- Department of Chemistry, University of Akron, Akron Ohio 44325-3601, United States
| | | | - Sanjay Gaire
- Department of Chemistry, University of Akron, Akron Ohio 44325-3601, United States
| | - Ivan A Popov
- Department of Chemistry, University of Akron, Akron Ohio 44325-3601, United States
| | | | - Aliaksei Boika
- Department of Chemistry, University of Akron, Akron Ohio 44325-3601, United States
| |
Collapse
|
5
|
Palmer TC, Beamer A, Pitt T, Popov IA, Cammack CX, Pratt HD, Anderson TM, Batista ER, Yang P, Davis BL. A Comparative Review of Metal-Based Charge Carriers in Nonaqueous Flow Batteries. CHEMSUSCHEM 2021; 14:1214-1228. [PMID: 33305517 DOI: 10.1002/cssc.202002354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Energy storage is becoming the chief barrier to the utilization of more renewable energy sources on the grid. With independent service operators aiming to acquire gigawatts in the next 10-20 years, there is a large need to develop a suite of new storage technologies. Redox flow batteries (RFB) may be part of the solution if certain key barriers are overcome. This Review focuses on a particular kind of RFB based on nonaqueous media that promises to meet the challenge through higher voltages than the organic and aqueous variants. This class of RFB is divided into three groups: molecular, macromolecular, and redox-targeted systems. The growing field of theoretical modeling is also reviewed and discussed.
Collapse
Affiliation(s)
- Travis C Palmer
- Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| | - Andrew Beamer
- Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| | - Tristan Pitt
- Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| | - Ivan A Popov
- T-1: Physics and Chemistry of Materials, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| | - Claudina X Cammack
- Sandia National Laboratories, P.O. Box 5800, MS 0614, Albuquerque, New Mexico, USA
| | - Harry D Pratt
- Sandia National Laboratories, P.O. Box 5800, MS 0614, Albuquerque, New Mexico, USA
| | - Travis M Anderson
- Sandia National Laboratories, P.O. Box 5800, MS 0614, Albuquerque, New Mexico, USA
| | - Enrique R Batista
- T-CNLS: Center for Nonlinear Studies, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| | - Ping Yang
- T-CNLS: Center for Nonlinear Studies, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| | - Benjamin L Davis
- Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, 87545, Los Alamos, New Mexico, USA
| |
Collapse
|
6
|
Schurr BE, Nachtigall O, VanGelder LE, Drappeau J, Brennessel WW, Matson EM. Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1595605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bradley E. Schurr
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Olaf Nachtigall
- Department of Chemistry, University of Rochester, Rochester, NY, USA
- Institut für Chemie and Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | - Justine Drappeau
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | | | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|