1
|
Peng W, Li W, Han H, Liu H, Liu P, Gong X, Chang J. Development of chromogenic detection for biomolecular analysis. VIEW 2022. [DOI: 10.1002/viw.20200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Weipan Peng
- School of Life Sciences Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin University Tianjin China
| | - Wenna Li
- School of Life Sciences Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin University Tianjin China
| | - Houyu Han
- School of Life Sciences Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin University Tianjin China
| | - Hao Liu
- Tianjin Stomatological Hospital, Nankai University Tianjin China
| | - Ping Liu
- Tianjin Enterprise Key Laboratory of Chemiluminescence and POCT Diagnostic Technology Tianjin China
| | - Xiaoqun Gong
- School of Life Sciences Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin University Tianjin China
| | - Jin Chang
- School of Life Sciences Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin University Tianjin China
| |
Collapse
|
2
|
Bacil RP, Garcia PH, de Araujo WR, Serrano SHP. Mechanism and kinetics of olanzapine and quetiapine oxidations at glassy carbon electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y, Boddula R, Huang Y. Electrochemical (bio) sensors go green. Biosens Bioelectron 2020; 163:112270. [PMID: 32568692 DOI: 10.1016/j.bios.2020.112270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
Electrochemical (bio) sensors are now widely acknowledged as a sensitive detection tool for disease diagnosis as well as the detection of numerous species of pharmaceutical, clinical, industrial, food, and environmental origin. The term 'green' demonstrates the development of electrochemical (bio) sensing platforms utilizing biodegradable and sustainable materials. Development of green sensing platforms is one of the most active areas of research minimizing the use of toxic/hazardous reagents and solvent systems, thereby further reducing the production of chemical wastes in sensor fabrication. The present review includes green electrochemical (bio) sensors which are based on firstly, green sensors comprising natural and non-hazardous materials (e.g., paper/clay/zeolites/biowastes), secondly sensors based on nanomaterials synthesized by green methods and lastly sensors constituting green solvents (e.g., ionic liquids/deep eutectic solvents). Electrochemical performances of such green sensors and their benefits such as biodegradability, non-toxicity, sustainability, low-cost, sensitive surfaces, etc. Have been discussed for quantification of various target analytes. Associated challenges, possible solutions, and opportunities towards fabricating green electrochemical sensors and biosensors have been provided in the conclusion section.
Collapse
Affiliation(s)
- Pramod K Kalambate
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhixiang Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Dhanjai
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Alberta, T5B 4E4, Canada
| | - Jingyi Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yue Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Rajender Boddula
- Chinese Academy of Sciences (CAS), Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Centre for Nanoscience and Technology, Beijing, 100190, PR China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|