1
|
Thapa BS, Pandit S, Gurung A, Ashun E, Ko SY, Oh SE. Granular activated carbon assisted biocathode for effective electrotrophic denitrification in microbial fuel cells. CHEMOSPHERE 2024; 352:141341. [PMID: 38307327 DOI: 10.1016/j.chemosphere.2024.141341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/26/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Granular activated carbon (GAC) has been widely used at the anode of a microbial fuel cell (MFC) to enhance anode performance due to its outstanding capacitance property. To the best of our knowledge, there haven't been any studies on GAC in the cathode for biofilm development and nitrate reduction in MFC. In this study, by adding GAC to biocathode, we investigated the impact of different GAC amounts and stirring speeds on power generation and nitrate reduction rate in MFC. The denitrification rate was found to be nearly two-times higher in MFCs with GAC (0.046 ± 0.0016 kg m-3 d-1) compared to that deprived of GAC (0.024 ± 0.0012 kg m-3 d-1). The electrotrophic denitrification has produced a maximum power density of 37.6 ± 4.8 mW m-2, which was further increased to 79.2 ± 7.4 mW m-2 with the amount of GAC in the biocathode. A comparative study performed with chemical catalyst (Pt carbon with air sparging) cathode and GAC biocathode showed that power densities produced with GAC biocathode were close to that with Pt cathode. Cyclic voltammetry analysis conducted at 10 mV s-1 between -0.9 V and +0.3 V (vs. Ag/AgCl) showed consistent reduction peaks at -0.6V (Ag/AgCl) confirming the reduction reaction in the biocathode. This demonstrates that the GAC biocathode used in this research is effective at producing power density and denitrification in MFC. Our belief that the nitrate reduction was caused by the GAC biocathode in MFC was further strengthened when SEM analysis showing bacterial aggregation and biofilm formation on the surface of GAC. The GAC biocathode system described in this research may be an excellent substitute for MFC's dual functions of current generation and nitrate reduction.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Chuncheon-Si, Gangwon-Do, 24341, Republic of Korea; Department of Biological Science, WEHR Life Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Anup Gurung
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Chuncheon-Si, Gangwon-Do, 24341, Republic of Korea.
| | - Ebenezer Ashun
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Chuncheon-Si, Gangwon-Do, 24341, Republic of Korea.
| | - Seoung-Yun Ko
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Chuncheon-Si, Gangwon-Do, 24341, Republic of Korea.
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Chuncheon-Si, Gangwon-Do, 24341, Republic of Korea.
| |
Collapse
|
2
|
Lim J, Cullen DA, Stavitski E, Lee SW, Hatzell MC. Atomically Ordered PdCu Electrocatalysts for Selective and Stable Electrochemical Nitrate Reduction. ACS ENERGY LETTERS 2023; 8:4746-4752. [PMID: 37969250 PMCID: PMC10644382 DOI: 10.1021/acsenergylett.3c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 11/17/2023]
Abstract
Electrochemical nitrate reduction (NO3 RR) has attracted attention as an emerging approach to mitigate nitrate pollution in groundwater. Here, we report that a highly ordered PdCu alloy-based electrocatalyst exhibits selective (91% N2), stable (480 h), and near complete (94%) removal of nitrate without loss of catalyst. In situ and ex situ XAS provide evidence that structural ordering between Pd and Cu improves long-term catalyst stability during NO3RR. In contrast, we also report that a disordered PdCu alloy-based electrocatalyst exhibits non-selective (44% N2 and 49% NH4+), unstable, and incomplete removal of nitrate. The copper within disordered PdCu alloy is vulnerable to accepting electrons from hydrogenated neighboring Pd atoms. This resulted in copper catalyst losses which were 10× greater than that of the ordered catalyst. The design of stable catalysts is imperative for water treatment because loss of the catalyst adds to the system cost and environmental impacts.
Collapse
Affiliation(s)
- Jeonghoon Lim
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eli Stavitski
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Seung Woo Lee
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marta C. Hatzell
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| |
Collapse
|
3
|
Begum H, Islam MN, Ben Aoun S, Safwan JA, Shah SS, Aziz MA, Hasnat MA. Electrocatalytic reduction of nitrate ions in neutral medium at coinage metal-modified platinum electrodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34904-34914. [PMID: 36525190 DOI: 10.1007/s11356-022-24372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Nitrate is a water-soluble toxic pollutant that needs to be excluded from the environment. For this purpose, several electrochemical studies have been conducted but most of them focused on the nitrate reduction reaction (NRR) in alkaline and acidic media while insignificant research is available in neutral media with Pt electrode. In this work, we explored the effect of three coinage metals (Cu, Ag, and Au) on Pt electrode for the electrochemical reduction of nitrate in neutral solution. Among the three electrodes, Pt-Cu exhibited the best catalytic activity toward NRR, whereas Pt-Au electrode did not show any reactivity. An activity order of Pt-Cu > Pt-Ag > Pt-Au was observed pertaining to NRR. The Pt-Ag electrode produces nitrite ions by reducing nitrate ions ([Formula: see text]. Meanwhile, at Pt-Cu electrode, nitrate reduction yields ammonia via both direct ([Formula: see text] and indirect ([Formula: see text] reaction pathways depending on the potential. The cathodic transfer coefficients were estimated to be ca. 0.40 and ca. 0.52, while the standard rate constants for nitrate reduction were calculated as ca. 2.544 × 10-2 cm.s-1 and ca. 1.453 × 10-2 cm.s-1 for Pt-Cu and Pt-Ag electrodes, respectively. Importantly, Pt-Cu and Pt-Ag electrodes execute NRR in the neutral medium between their respective Hydrogen-Evolution Reaction (HER) and Open-Circuit Potential (OCP), implying that on these electrodes, HER and NRR do not compete and the latter is a corrosion-free process.
Collapse
Affiliation(s)
- Humayra Begum
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Nurnobi Islam
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, PO Box 30002, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Jamil A Safwan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
- Bangladesh Academy of Sciences, Agargaon, Dhaka, 1207, Bangladesh.
| |
Collapse
|
4
|
Xu H, Ma Y, Chen J, Zhang WX, Yang J. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle. Chem Soc Rev 2022; 51:2710-2758. [PMID: 35274646 DOI: 10.1039/d1cs00857a] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrate enrichment, which is mainly caused by the over-utilization of fertilisers and industrial sewage discharge, is a major global engineering challenge because of its negative influence on the environment and human health. To solve this serious problem, many technologies, such as the activated sludge method, reverse osmosis, ion exchange, adsorption, and electrodialysis, have been developed to reduce the nitrate levels in water bodies. However, the applications of these traditional techniques are limited by several drawbacks, such as a long sludge retention time, slow kinetics, and undesirable by-products. From an environmental perspective, the most promising nitrate reduction technology is enabled to convert nitrate into benign N2, and features low cost, high efficiency, and environmental friendliness. Recently, electrocatalytic nitrate reduction has been proven by satisfactory research achievements to be one of the most promising methods among these technologies. This review provides a comprehensive account of nitrate reduction using electrocatalysis methods. The fundamentals of electrocatalytic nitrate reduction, including the reaction mechanisms, reactor design principles, product detection methods, and performance evaluation methods, have been systematically summarised. A detailed introduction to electrocatalytic nitrate reduction on transition metals, especially noble metals and alloys, Cu-based electrocatalysts, and Fe-based electrocatalysts is provided, as they are essential for the accurate reporting of experimental results. The current challenges and potential opportunities in this field, including the innovation of material design systems, value-added product yields, and challenges for products beyond N2 and large-scale sewage treatment, are highlighted.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Wei-Xian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Yin Z, Liu J, Jiang L, Chu J, Yang T, Kong A. Semi-enclosed Cu nanoparticles with porous nitrogen-doped carbon shells for efficient and tolerant nitrate electroreduction in neutral condition. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Filling in nanoporous gold with silver via bulk deposition and surface-limited redox replacement approaches. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Hossain MM, Kawaguchi T, Shimazu K, Nakata K. Reduction of nitrate on tin-modified palladium-platinum electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. Boosting Selective Nitrate Electroreduction to Ammonium by Constructing Oxygen Vacancies in TiO2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05260] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ranran Jia
- Department of Industrial Catalysis, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yuting Wang
- Department of Industrial Catalysis, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Changhong Wang
- Department of Industrial Catalysis, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yangfang Ling
- Department of Industrial Catalysis, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yifu Yu
- Department of Industrial Catalysis, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Bin Zhang
- Department of Industrial Catalysis, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Xie Y, Li C, Razek SA, Fang J, Dimitrov N. Synthesis of Nanoporous Au−Cu−Pt Alloy as a Superior Catalyst for the Methanol Oxidation Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunxiang Xie
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Can Li
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Sara A Razek
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Jiye Fang
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Nikolay Dimitrov
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| |
Collapse
|