1
|
Reddy GR, Sravani B, Jung N, Dillip GR, Joo SW. Engineering Rich-Cation Vacancies in CuCo 2O 4 Hollow Spheres with a Large Surface Area Derived from a Template-Free Approach for Ultrahigh Capacity and High-Energy Density Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37485849 DOI: 10.1021/acsami.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Intriguing cationic defects with hollow nano-/microstructures are a critical challenge but a potential strategy to discover electrochemical energy conversion and storage devices with improved electrochemical performances. Herein, we successfully produced a highly porous, and large surface area of self-templated CuCo2O4 hollow spheres (CCOHSs) with cationic defects via a solvothermal route. We hypothesized that the inside-out Ostwald ripening mechanism of the template-free strategy was the framework for forming the CCOHSs. Cationic defects (Cu) within the CCOHSs were identified by employing various analytical techniques, including energy-dispersive X-ray spectroscopy analysis of both scanning and transmission electron microscopy, X-ray photon spectroscopy, and inductively coupled plasma-atomic emission spectroscopy. The resulting CCOHSs had significant properties, such as a high specific surface area of 98.32 m2 g-1, rich porosity, and battery-type electrode behavior in supercapacitor applications. Notably, the CCOHSs demonstrated an outstanding specific capacity of 1003.7 C g-1 at 1 A g-1, with excellent structural integrity and cycle stability. Moreover, the fabricated asymmetric CCOHS//activated carbon device exhibited a high energy density of 65.2 Wh kg-1 at a power density of 777.8 W kg-1.
Collapse
Affiliation(s)
| | - Bathinapatla Sravani
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Gowra Raghupathy Dillip
- Energy Institute, Centre of Rajiv Gandhi Institute of Petroleum Technology, Bengaluru, 560064, India
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
2
|
Syafiq A, Zaini FKM, Balakrishnan V, Rahim NA. Synthesis of transparent thermal insulation coating for efficient solar cells. PIGMENT & RESIN TECHNOLOGY 2023. [DOI: 10.1108/prt-10-2022-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose
The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO), nano-tin dioxide (SnO2) and nano-titanium dioxide (TiO2), which can reduce the temperature of solar cells.
Design/methodology/approach
The thermal-insulation coating is designed using sol-gel process. The aminopropyltriethoxysilane/methyltrimethoxysilane binder system improves the cross-linking between the hydroxyl groups, -OH of nanoparticles. The isopropyl alcohol is used as a solvent medium. The fabrication method is a dip-coating method.
Findings
The prepared S1B1 coating (20 Wt.% of SnO2) exhibits high transparency and great thermal insulation property where the surface temperature of solar cells has been reduced by 13°C under 1,000 W/m2 irradiation after 1 h. Meanwhile, the Z1B2 coating (20 Wt.% of ZnO) reduced the temperature of solar cells by 7°C. On the other hand, the embedded nanoparticles have improved the fill factor of solar cells by 0.2 or 33.33%.
Research limitations/implications
Findings provide a significant method for the development of thermal-insulation coating by a simple synthesis process and low-cost materials.
Practical implications
The thermal-insulation coating is proposed to prevent exterior heat energy to the inside solar panel glass. At the same time, it can prevent excessive heating on the solar cell’s surface, later improves the efficiency of solar cell.
Originality/value
This study presents a the novel method to develop and compare the thermal-insulation coating by using various nanoparticles, namely, nano-TiO2, nano-SnO2 and nano-ZnO at different weight percentage.
Collapse
|
3
|
Balakrishnan K, Veerapandy V, Fjellvåg H, Vajeeston P. First-Principles Exploration into the Physical and Chemical Properties of Certain Newly Identified SnO 2 Polymorphs. ACS OMEGA 2022; 7:10382-10393. [PMID: 35382265 PMCID: PMC8973149 DOI: 10.1021/acsomega.1c07063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/19/2023]
Abstract
Tin dioxide (SnO2) is one of the transparent conductive oxides that has aroused the interest of researchers due to its wide range of applications. SnO2 exists in a variety of polymorphs with different atomic structures and Sn-O connectivity. However, there are no comprehensive studies on the physical and chemical properties of SnO2 polymorphs. For the first time, we investigated the structural stability and ground-state properties of 20 polymorphs in the sequence of experimental structures determined by density functional theory. We used a systematic analytical method to determine the viability of polymorphs for practical applications. Among the structurally stable polymorphs, Fm3̅m, I41/amd, and Pnma-II are dynamically unstable. As far as we know, no previous research has investigated the electronic properties of SnO2 polymorphs from the hybrid functional of Heyd, Scuseria, and Erhzerhof (HSE06) except P42/mnm, with calculated band gap values ranging from 2.15 to 3.35 eV. The dielectric properties of the polymorphs have been reported, suggesting that SnO2 polymorphs are also suitable for energy storage applications. The bonding nature of the global minimum rutile structure is analyzed from charge density, charge transfer, and electron localization function. The Imma-SnO2 polymorph is mechanically unstable, while the remaining polymorphs met all stability criteria. Further, we calculated Raman and IR spectra, elastic moduli, anisotropic factors, and the direction-dependent elastic moduli of stable polymorphs. Although there are many polymorphic forms of SnO2, rutile is a promising candidate for many applications; however, we investigated the feasibility of the remaining polymorphs for practical applications.
Collapse
Affiliation(s)
- Kanimozhi Balakrishnan
- Department
of Computational Physics, School of Physics, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, Tamil Nadu, India
| | - Vasu Veerapandy
- Department
of Computational Physics, School of Physics, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, Tamil Nadu, India
| | - Helmer Fjellvåg
- Center
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo 0371, Norway
| | - Ponniah Vajeeston
- Center
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo 0371, Norway
| |
Collapse
|
4
|
Bhawna, Kumar S, Sharma R, Gupta A, Tyagi A, Singh P, Kumar A, Kumar V. Recent insights into SnO 2-based engineered nanoparticles for sustainable H 2 generation and remediation of pesticides. NEW J CHEM 2022. [DOI: 10.1039/d1nj05808h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to the ongoing industrial revolution and global health pandemics, solar-driven water splitting and pesticide degradation are highly sought to cope with catastrophes such as depleting fossil reservoirs, global warming, and environmental degradation.
Collapse
Affiliation(s)
- Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi University, New Delhi, India
| | - Anup Kumar
- School of Physics, Trinity College Dublin, Ireland
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|
5
|
Feres FH, Mayer RA, Wehmeier L, Maia FCB, Viana ER, Malachias A, Bechtel HA, Klopf JM, Eng LM, Kehr SC, González JC, Freitas RO, Barcelos ID. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat Commun 2021; 12:1995. [PMID: 33790286 PMCID: PMC8012705 DOI: 10.1038/s41467-021-22209-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023] Open
Abstract
Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.
Collapse
Affiliation(s)
- Flávio H Feres
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Physics Department, Gleb Wataghin Physics Institute, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Rafael A Mayer
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Physics Department, Gleb Wataghin Physics Institute, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Lukas Wehmeier
- Institute of Applied Physics, Technische Universität Dresden, Dresden, Germany
- ct.qmat, Dresden-Würzburg Cluster of Excellence-EXC 2147, Technische Universität Dresden, Dresden, Germany
| | - Francisco C B Maia
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - E R Viana
- Department of Physics, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, PR, Brazil
| | - Angelo Malachias
- Department of Physics, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Hans A Bechtel
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Michael Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Lukas M Eng
- Institute of Applied Physics, Technische Universität Dresden, Dresden, Germany
- ct.qmat, Dresden-Würzburg Cluster of Excellence-EXC 2147, Technische Universität Dresden, Dresden, Germany
| | - Susanne C Kehr
- Institute of Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - J C González
- Department of Physics, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raul O Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Ingrid D Barcelos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| |
Collapse
|
6
|
Bao Y, Yan Y, Ma J, Zhang W, Zong Y. ZnO encapsulants: Design and new view. Adv Colloid Interface Sci 2020; 283:102238. [PMID: 32823219 DOI: 10.1016/j.cis.2020.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/27/2022]
Abstract
ZnO encapsulants with capsular configurations (e.g. a large inner cavity, sizeable pore, low density and high specific surface area) have attracted considerable attention as effective and promising candidates in various fields owing to the merits of ZnO (e.g. UV protection, photoelectric catalysis, gas sensitivity, antibacterial effect). However, the research on ZnO encapsulants has not yet reached the eruptive stage. This probably due to their high morphological flexibility and relatively low structural strength that is not easy to control during the preparation process. In this review, the principles of cavity-generating and pore-forming are firstly discussed in depth after going through the synthesis of hollow ZnO in the past ten years. Moreover, the regulation of cavity diameter and pore size of different synthetic strategies is investigated. Then, the research progress of ZnO encapsulants is debated in detail from the loading and release of functional materials and the corresponding characterization. Finally, some potential designs and new views on the future research and development of ZnO encapsulants are concluded.
Collapse
|
7
|
Jiang T, Gao Y, Wang Y, Zhao Z, Yu J, Yang K, Zhao Y, Li W, Wu X. Development and Mechanical Characterization of HGMS-EHS-Reinforced Hollow Glass Bead Composites. ACS OMEGA 2020; 5:6725-6737. [PMID: 32258908 PMCID: PMC7114879 DOI: 10.1021/acsomega.0c00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Hollow glass microsphere-reinforced epoxy hollow spheres (HGMS-EHSs) were prepared by a "rolling ball method" using expanded polystyrene beads, HGMSs, and epoxy resin (EP). The three-phase epoxy syntactic foam (epoxy/HGMS-EHS-HGMS composite) was fabricated by combining HGMS-EHS as a lightweight filler with EP and HGMS by a "molding method". The HGMS-EHS and epoxy curing agent systems were well mixed by scanning electron microscopy. Experiments show that higher HGMS-EHS stack volume fraction, lower HGMS-EHS layer number, higher HGMS-EHS diameter, lower HGMS-EHS density, higher HGMS volume fraction, and lower HGMS density result in a decrease in the density of the three-phase epoxy syntactic foam. However, the above factors have the opposite effect on the compressive strength of the three-phase epoxy syntactic foam. Therefore, in order to obtain the "high-strength and low-density" three-phase epoxy syntactic foam, the influence of various factors should be considered comprehensively to achieve the best balance of compressive strength and density of the three-phase epoxy syntactic foam. This can provide some advice for the preparation of buoyancy materials for deep sea operations.
Collapse
Affiliation(s)
- Tao Jiang
- Merchant
Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Yuan Gao
- College
of Ocean Science and Engineering, Shanghai
Maritime University, Shanghai 201306, China
| | - Ying Wang
- Merchant
Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Zhongxian Zhao
- Merchant
Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Jinhong Yu
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo
Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ke Yang
- School
of Materials Science and Engineering, Central
South University, Changsha 410083, China
| | - Yuantao Zhao
- Merchant
Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Wenge Li
- Merchant
Marine College, Shanghai Maritime University, Shanghai 201306, China
| | - Xinfeng Wu
- College
of Ocean Science and Engineering, Shanghai
Maritime University, Shanghai 201306, China
| |
Collapse
|
8
|
Turnaoglu H, Agildere AM, Kural Rahatli F, Yildirim Donmez F, Ocal R, Sezer T, Can U, Sezgin A, Aslamaci S. Evaluation of Neuroimaging Findings of Central Nervous System Complications in Heart Transplant Recipients. EXP CLIN TRANSPLANT 2018; 18:814-822. [PMID: 29790456 DOI: 10.6002/ect.2018.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES In this study, we presented neuroradiologic findings and diagnoses of neurologic complications in a series of heart transplant recipients. MATERIALS AND METHODS A retrospective review was conducted at Başkent University Hospital. We searched the hospital and radiology databases and identified 109 heart transplant recipients. Thirty-one of these recipients had neuroradiologic evaluations secondary to presentation of neurologic symptoms after heart transplant, with 18 patients evaluated with computed tomography and 22 patients evaluated with magnetic resonance imaging (overlap of imaging-defined groups occurred in 9 recipients). Computed tomography and magnetic resonance imaging studies were retrieved from the Picture Archiving and Communication System, with each type of imaging retrospectively evaluated on consensus by 2 radiologists. RESULTS Radiopathologic findings related to symptoms were detected in 12 of the 31 study patients. The most common abnormality was posterior reversible leukoencephalopathy syndrome (5 patients, 4.6%). The other abnormalities were ischemic stroke (3 patients, 2.8%), hemorrhagic stroke (1 patient, 0.9%), intracranial abscess (2 patients, 1.8%), and intracranial dissemination of sinusoidal fungal infection and related hemorrhagic infarct (1 patient, 0.9%). The other 19 heart transplant recipients who underwent computed tomography and/or magnetic resonance imaging for neurologic complaints showed no neuroradiologic findings related to neurologic symptoms. CONCLUSIONS Posterior reversible leukoencephalopathy syndrome and ischemic stroke were the most common neurologic complications in our heart transplant recipients. The other complications were hemorrhagic stroke, intracranial abscess, and intracranial dissemination of sinusoidal fungal infection. Neurologic complications are common in heart transplant recipients and should be identified promptly for early treatment. For the recognition of these complications, computed tomography should be performed for initial evaluation to rule out edema or hemorrhage. However, in the presence of serious neurologic symptoms that cannot be explained by computed tomography, magnetic resonance imaging should be indicated.
Collapse
Affiliation(s)
- Hale Turnaoglu
- From the Department of Radiology, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|