1
|
Chen W, Li S, Albahi A, Ye S, Li J, Li B. The effect of konjac glucomannan on enzyme kinetics and fluorescence spectrometry of digestive enzymes: An in vitro research from the perspective of macromolecule crowding. Food Res Int 2024; 184:114247. [PMID: 38609226 DOI: 10.1016/j.foodres.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Konjac glucomannan (KGM) can significantly prolong gastrointestinal digestion. However, it is still worth investigating whether the macromolecular crowding (MMC) induced by KGM is correlated with digestion. In this paper, the MMC effect was quantified by fluorescence resonance energy transfer and microrheology, and the digests of starch, protein, and oil were determined. The digestive enzymes were analyzed by enzyme reaction kinetic and fluorescence quenching. The results showed that higher molecular weight (604.85 ∼ 1002.21 kDa) KGM created a larger MMC (>0.8), and influenced the digestion of macronutrients; the digests of starch, protein, and oil all decreased significantly. MMC induced by KGM decreased the Michaelis-Menten constants (Km and Vmax) of pancreatic α-amylase (PPA), pepsin (PEP), and pancreatic lipase (PPL). The larger MMC (>0.8) induced by KGM resulted in the decrease of fluorescence quenching constants (Ksv) in PPA and PPL, and the increase of Ksv in PEP. Therefore, varying degrees of MMC induced by KGM could play a role in regulating digestion and the inhibitory effect on digestion was more significant in a relatively more crowded environment induced by KGM. This study provides theoretical support for the strategies of nutrient digestion regulation from the perspective of MMC caused by dietary fiber.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Nashed A, Naidoo KJ. Universal Glycosyltransferase Continuous Assay for Uniform Kinetics and Inhibition Database Development and Mechanistic Studies Illustrated on ST3GAL1, C1GALT1, and FUT1. ACS OMEGA 2024; 9:17518-17532. [PMID: 38645360 PMCID: PMC11025096 DOI: 10.1021/acsomega.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Chemical systems glycobiology requires experimental and computational tools to make possible big data analytics benefiting genomics and proteomics. The impediment to tool development is that the nature of glycan construction and mutation is not template driven but rests on cooperative glycosyltransferase (GT) catalytic synthesis. What is needed is the collation of kinetics and inhibition data in a standardized form to make possible analytics of glycan and glycoconjugate synthesis, mechanism extraction, and pattern recognition. Currently, kinetics assays in use for GTs are not universal in processing nucleoside phosphate UDP, GDP, and CMP donor-based glycosylation reactions due to limitations in accuracy and large substrate volume requirements. Here we present a universal glycosyltransferase continuous (UGC) assay able to measure the declining concentration of the NADH reporter molecule through fluorescence spectrophotometry and, therefore, determine reaction rate parameters. The development and parametrization of the assay is based on coupling the nucleotide released from GT reactions with pyruvate kinase, via nucleoside diphosphate kinase (NDK) in the case of NDP-based donor reactions. In the case of CMP-based reactions, the coupling is carried out via another kinase, cytidylate kinase in combination with NDK, which phosphorylates CMP to CDP, then CDP to CTP. Following this, we conduct kinetics and inhibition assay studies on the UDP, GDP, and CMP-based glycosylation reactions, specifically C1GAlT1, FUT1, and ST3GAL1, to represent each class of donor, respectively. The accuracy of calculating initial rates using the continuous assay compared to end point (noncontinuous) assays is demonstrated for the three classes of GTs. The previously identified natural product soyasaponin1 inhibitor was used as a model to demonstrate the application of the UGC assay as a standardized inhibition assay for GTs. We show that the dose response of ST3GAL1 to a serial dilution of Soyasaponin1 has time-dependent inhibition. This brings into question previous inhibition findings, arrived at using an end point assay, that have selected a seemingly random time point to measure inhibition. Consequently, using standardized Km values taken from the UGC assay study, ST3GAL1 was shown to be the most responsive enzyme to soyasaponin1 inhibition, followed by FUT1, then C1GALT1 with IC50 values of 37, 52, and 886 μM respectively.
Collapse
Affiliation(s)
- Abdullateef Nashed
- Scientific
Computing Research Unit, University of Cape
Town, PD Hahn Building, Rondebosch 7701, South Africa
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Rondebosch 7701, South Africa
| | - Kevin J. Naidoo
- Scientific
Computing Research Unit, University of Cape
Town, PD Hahn Building, Rondebosch 7701, South Africa
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Rondebosch 7701, South Africa
| |
Collapse
|
3
|
Lo Verde C, Pepra-Ameyaw NB, Drucker CT, Okumura TLS, Lyon KA, Muniz JC, Sermet CS, Were Senger L, Owens CP. A highly active esterase from Lactobacillus helveticus hydrolyzes chlorogenic acid in sunflower meal to prevent chlorogenic acid induced greening in sunflower protein isolates. Food Res Int 2022; 162:111996. [PMID: 36461298 DOI: 10.1016/j.foodres.2022.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Chlorogenic acid (CGA) is an ester between caffeic and quinic acid. It is found in many foods and reacts with free amino groups in proteins at alkaline pH, leading to the formation of an undesirable green pigment in sunflower seed-derived ingredients. This paper presents the biochemical characterization and application of a highly active chlorogenic acid esterase from Lactobacillus helveticus. The enzyme is one of the most active CGA esterases known to date with a Km of 0.090 mM and a kcat of 82.1 s-1. The CGA esterase is easily expressed recombinantly in E. coli in large yields and is stable over a wide range of pH and temperatures. We characterized CGA esterase's kinetic properties in sunflower meal and demonstrated that the enzyme completely hydrolyzes CGA in the meal. Finally, we showed that CGA esterase treatment of sunflower seed meal enables the production of pale brown sunflower protein isolates using alkaline extraction. This work will allow for more widespread use of sunflower-derived products in applications where neutrally-colored food products are desired.
Collapse
Affiliation(s)
- Christine Lo Verde
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Nana Baah Pepra-Ameyaw
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Charles T Drucker
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Tracie L S Okumura
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Katherine A Lyon
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Julia C Muniz
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Chloe S Sermet
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Lilian Were Senger
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| |
Collapse
|
4
|
Fard PT, Albert SK, Ko J, Lee S, Park SJ, Kim J. Spatial Organization of Photocatalysts and Enzymes on Janus-Type DNA Nanosheets for Efficient CO 2 Conversion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pegah Tavakoli Fard
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Shine K. Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Jein Ko
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Sohyun Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Jinheung Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
5
|
Deshwal A, Maiti S. Macromolecular Crowding Effect on the Activity of Liposome-Bound Alkaline Phosphatase: A Paradoxical Inhibitory Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7273-7284. [PMID: 34086469 DOI: 10.1021/acs.langmuir.1c01177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cytoplasm of a cell is extremely crowded, with 20-30% being large biomolecules. This crowding enforces a significant amount of the physical and chemical barrier around biomolecules, so understanding any biomolecular event within the cellular system is challenging. Unsurprisingly, enzymes show a diverse kind of catalytic behavior inside a crowded environment and thus have remained an area of active interest in the last few decades. The situation can become even more complex and exciting in the case of understanding the behavior of a membrane-bound enzyme (almost 25-30% of enzymes are membrane-bound) in such a crowded environment that until now has remained unexplored. Herein, we have particularly investigated how a membrane-bound enzyme (using liposome-bound alkaline phosphatase) can behave in a crowded environment comprising polymer molecule-like poly(ethylene glycol) (PEG) of different weights (PEG400, PEG4000, and PEG9000) and Ficoll 400. We have compared the activity using a polymer microbead conjugated enzyme and have found that liposome-bound alkaline phosphatase had much higher activity in crowded environments, showing the importance and superiority of soft-deformable particles (i.e., vesicles) over hard spheres in macro-molecularly crowded media. Interstingly, we have found a paradoxical behavior of inhibitors in terms of both their extent and pathway of inhibitory action. For instance, phosphates, known as competitive inhibitors in buffer, behave as uncompetitive inhibitors in liposome-bound enzymes in crowded media with an ∼5-fold less inhibitory effect, whereas phenyl alanine (an uncompetitive inhibitor in buffer) did not show any inhibitory potential when the enzyme was membrane-bound and in crowded media containing PEG9000 (30 wt %). Overall, this demonstration elucidates aspects of membrane-bound enzymes in crowded media in terms of both catalytic behavior and inhibitory actions and can lead to further studies of the understanding of enzymatic behavior in such complex crowded environments having a dampening effect in regular diffusive transport.
Collapse
Affiliation(s)
- Akshi Deshwal
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| |
Collapse
|
6
|
Jaafar NR, Ahmad RA, Nawawi NN, Abd Rahman NH, Shamsul Annuar NA, Rahman RA, Illias RM. Synergistic action of cyclodextrin glucanotransferase and maltogenic amylase improves the bioconversion of starch to malto-oligosaccharides. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
8
|
Wilcox XE, Ariola A, Jackson JR, Slade KM. Overlap Concentration and the Effect of Macromolecular Crowding on Citrate Synthase Activity. Biochemistry 2020; 59:1737-1746. [DOI: 10.1021/acs.biochem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xander E. Wilcox
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Ashton Ariola
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| | - Jasmine R. Jackson
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| | - Kristin M. Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| |
Collapse
|