1
|
Domagała A, Buda S, Baranska M, Zając G. Glutathione and its structural modifications recognized by Raman Optical Activity and Circularly Polarized Luminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124995. [PMID: 39208544 DOI: 10.1016/j.saa.2024.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Raman Optical Activity combined with Circularly Polarized Luminescence (ROA-CPL) was used in the spectral recognition of glutathione peptide (GSH) and its model post-translational modifications (PTMs). We demonstrate the potential of ROA spectroscopy and CPL probes (EuCl3, Na3[Eu(DPA)3], NaEuEDTA) in the study of unmodified peptide, i.e. GSH, and its derivatives, i.e. glutathione oxidized (GSSG), S-acetylglutathione (GSAc) and S-nitrosoglutathione (GSNO). ROA spectral features of GSH, GSSG, and GSAc were determined along with thier changes upon the different pH conditions. Apart from the ROA, induced CPL signals of Eu(III) probes also proved to be sensitive to the structural modifications of GSH-based model PTMs, enabling their spectral recognition, especially by the NaEuEDTA probe.
Collapse
Affiliation(s)
- Agnieszka Domagała
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Szymon Buda
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland.
| |
Collapse
|
2
|
Longhena F, Boujebene R, Brembati V, Sandre M, Bubacco L, Abbate S, Longhi G, Bellucci A. Nanorod-associated plasmonic circular dichroism monitors the handedness and composition of α-synuclein fibrils from Parkinson's disease models and post-mortem brain. NANOSCALE 2024; 16:18882-18898. [PMID: 39318230 DOI: 10.1039/d4nr03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human full-length (fl) αSyn fibrils, key neuropathological hallmarks of Parkinson's disease (PD), generate intense optical activity corresponding to the surface plasmon resonance of interacting gold nanorods. Herein, we analysed fibril-enriched protein extracts from mouse and human brain samples as well as from SK-N-SH cell lines with or without human fl and C-terminally truncated (Ctt) αSyn overexpression and exposed them to αSyn monomers, recombinant fl αSyn fibrils or Ctt αSyn fibrils. In vitro-generated human recombinant fl and Ctt αSyn fibrils and fibrils purified from SK-N-SH cells with fl or Ctt αSyn overexpression were also analysed using transmission electron microscopy (TEM) to gain insights into the nanorod-fibril complexes. We found that under the same experimental conditions, bisignate circular dichroism (CD) spectra of Ctt αSyn fibrils exhibited a blue-wavelength shift compared to that of fl αSyn fibrils. TEM results supported that this could be attributed to the different properties of nanorods. In our experimental conditions, fibril-enriched PD brain extract broadened the longitudinal surface plasmonic band with a bisignate CD couplet centred corresponding to the absorption band maximum. Plasmonic CD (PCD) couplets of in vivo- and in vitro-generated fibrils displayed sign reversal, suggesting their opposite handedness. Moreover, the incubation of in vitro-generated human recombinant fl αSyn fibrils in mouse brain extracts from αSyn null mice resulted in PCD couplet inversion, indicating that the biological environment may shape the handedness of αSyn fibrils. These findings support that nanorod-based PCD can provide useful information on the composition and features of αSyn fibrils from biological materials.
Collapse
Affiliation(s)
- Francesca Longhena
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Department of Clinical Neurosciences-Clifford Allbutt Building, University of Cambridge, Hills Road CB2 0AH, Cambridge, UK
| | - Rihab Boujebene
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Michele Sandre
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Sergio Abbate
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Arianna Bellucci
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
3
|
Hachlica N, Kolodziejczyk A, Rawski M, Górecki M, Wajda A, Kaczor A. "Nature or nurture" - How environmental factors influence the conformational memory of amyloid fibrils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123293. [PMID: 37683433 DOI: 10.1016/j.saa.2023.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Amyloid fibrils are complex protein structures with multilayered chiral architecture, that are known to self-propagate. The replication of the mother seed structure by daughter fibrils is known as conformational or templated memory. Using vibrational circular dichroism (VCD), electronic circular dichroism (ECD), transmission electron microscopy (TEM), and cryo-electron microscopy (cryo-EM) we have shown that environmental factors (here agitation) can be a competing force against the templated growth of human lysozyme fibrils. In the cross-seeding experiment non-agitated daughters preserved the structure of agitated mothers, whereas agitated daughters did not always exhibit the same characteristics as their non-agitated mothers. This pattern was reflected on various levels of fibril architecture (secondary structure, protofilament handedness, morphology), demonstrating that the structural indeterminism originates from deeper levels of the fibril structure. This observation may contribute to a better understanding of the processes behind fibril formation.
Collapse
Affiliation(s)
- Natalia Hachlica
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Aleksandra Kolodziejczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michal Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Kang W, Tang Y, Meng X, Lin S, Zhang X, Guo J, Li Q. A Photo- and Thermo-Driven Azoarene-Based Circularly Polarized Luminescence Molecular Switch in a Liquid Crystal Host. Angew Chem Int Ed Engl 2023; 62:e202311486. [PMID: 37648676 DOI: 10.1002/anie.202311486] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The development of chiral optical active materials with switchable circularly polarized luminescence (CPL) signals remains a challenge. Here an azoarene-based circularly polarized luminescence molecular switch, (S, R, S)-switch 1 and (R, R, R)-switch 2, are designed and prepared with an (R)-binaphthyl azo group as a chiral photosensitive moiety and two (S)- or (R)-binaphthyl fluorescent molecules with opposite or the same handedness as chiral fluorescent moieties. Both switches exhibit reversible trans/cis isomerization when irradiated by 365 nm UV light and 520 nm green light in solvent and liquid crystal (LC) media. In contrast with the control (R, R, R)-switch 2, when switch 1 is doped into nematic LCs, polarization inversion and switching-off of the CPL signals are achieved in the resultant helical superstructure upon irradiation with 365 nm UV and 520 nm green light, respectively. Meanwhile, the fluorescence intensity of the system is basically unchanged during this switching process. In particular, these variations of the CPL signals could be recovered after heating, realizing the true sense of CPL reversible switching. Taking advantage of the unique CPL switching, the proof-of-concept for "a dual-optical information encryption system" based on the above CPL active material is demonstrated.
Collapse
Affiliation(s)
- Wenxin Kang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xianyu Meng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
5
|
Homberg A, Navazio F, Le Tellier A, Zinna F, Fürstenberg A, Besnard C, Di Bari L, Lacour J. Circularly polarized luminescence from Tb(III) interacting with chiral polyether macrocycles. Dalton Trans 2022; 51:16479-16485. [PMID: 36218085 PMCID: PMC9641584 DOI: 10.1039/d2dt02627a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/04/2022] [Indexed: 10/14/2023]
Abstract
A straightforward two-step synthesis protocol affords a series of chiral amide-based bis-pyridine substituted polyether macrocycles. One ligand is particularly able to complex terbium(III) ions spontaneously. Upon complexation, interesting chiroptical properties are observed both in absorbance (ECD) and in fluorescence (CPL). In ligand-centered electronic circular dichroism, a sign inversion coupled with a signal enhancement is measured; while an easily detectable metal-centered circularly polarized luminescence with a glum of 0.05 is obtained for the main 5D4 → 7F5 terbium transition. The coordination mode and structure of the complex was studied using different analysis methods (NMR analysis, spectrophotometric titration and solid-state elucidation).
Collapse
Affiliation(s)
- Alexandre Homberg
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | - Federica Navazio
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino n. 1, 62032 Camerino, Italy
| | - Antoine Le Tellier
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Alexandre Fürstenberg
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, Quai Ernest Ansermet 24, 1211 Geneva 4, Switzerland
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| |
Collapse
|
6
|
Krupová M, Leszczenko P, Sierka E, Emma Hamplová S, Pelc R, Andrushchenko V. Vibrational Circular Dichroism Unravels Supramolecular Chirality and Hydration Polymorphism of Nucleoside Crystals. Chemistry 2022; 28:e202201922. [DOI: 10.1002/chem.202201922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Hylleraas Centre for Quantum Molecular Sciences Department of Chemistry UiT The Arctic University of Norway N-9037 Tromsø Norway
| | - Patrycja Leszczenko
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Ewa Sierka
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Sára Emma Hamplová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Department of Biology and Biochemistry University of Bath Claverton Down Bath BA2 7AY United Kingdom
| | - Radek Pelc
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Third Faculty of Medicine Charles University Ruská 87 10000 Prague Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
7
|
Yang G, Yao Z, Yang X, Xie Y, Duan P, Zhang Y, Zhang SX. A Flexible Circularly Polarized Luminescence Switching Device Based on Proton-Coupled Electron Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202636. [PMID: 35861377 PMCID: PMC9475559 DOI: 10.1002/advs.202202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Flexible circularly polarized luminescence (CPL) switching devices have been long-awaited due to their promising potential application in wearable optoelectronic devices. However, on account of the few materials and complicated design of manufacturing systems, how to fabricate a flexible electric-field-driven CPL-switching device is still a serious challenge. Herein, a flexible device with multiple optical switching properties (CPL, circular dichroism (CD), fluorescence, color) is designed and prepared efficiently based on proton-coupled electron transfer (PCET) mechanism by optimizing the chiral structure of switching molecule. More importantly, this device can maintain the switching performance even after 300 bending-unbending cycles. It has a remarkable comprehensive performance containing bistable property, low open voltage, and good cycling stability. Then, prototype devices with designed patterns have been fabricated, which opens a new application pattern of CPL-switching materials.
Collapse
Affiliation(s)
- Guojian Yang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhiqiang Yao
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Xuefeng Yang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and Technology (NCNST)Beijing100190P. R. China
| | - Yigui Xie
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in NanoscienceCAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and Technology (NCNST)Beijing100190P. R. China
| | - Yu‐Mo Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Sean Xiao‐An Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
8
|
Wu T. A Raman optical activity spectrometer can sensitively detect lanthanide circularly polarized luminescence. Phys Chem Chem Phys 2022; 24:15672-15686. [PMID: 35735101 DOI: 10.1039/d2cp01641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, many studies have appeared in which the Raman optical activity (ROA) instrument was found to be convenient for measuring circularly polarized luminescence (CPL). Typically, weak lanthanide luminescence including circular polarization could be detected. The new detection scheme is referred to as ROA-CPL spectroscopy. It is particularly useful when also the vibrational (ROA) itself is detectable as the molecule structure can be examined more reliably. In this review, development of this chiroptical approach and its applications in structural studies of biomolecules are summarized.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic.
| |
Collapse
|
9
|
Kotova O, O’Reilly C, Barwich ST, Mackenzie LE, Lynes AD, Savyasachi AJ, Ruether M, Pal R, Möbius ME, Gunnlaugsson T. Lanthanide luminescence from supramolecular hydrogels consisting of bio-conjugated picolinic-acid-based guanosine quadruplexes. Chem 2022. [DOI: 10.1016/j.chempr.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Meskers SCJ. Circular Polarization of Luminescence as a Tool To Study Molecular Dynamical Processes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Stefan C. J. Meskers
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. box 513 (STW 4.37) NL 5600 MB Eindhoven Netherlands
| |
Collapse
|
11
|
Krupová M, Kessler J, Bouř P. Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study. Chemphyschem 2020; 22:83-91. [DOI: 10.1002/cphc.202000797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Mathematics and Physics Charles University Ke Karlovu 3 12116 Prague 2 Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
12
|
Lyczko K, Rode JE, Dobrowolski JC. Chiral Lanthanide Complexes with l- and d-Alanine: An X-ray and Vibrational Circular Dichroism Study. Molecules 2020; 25:E2729. [PMID: 32545530 PMCID: PMC7357152 DOI: 10.3390/molecules25122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
A whole series of [Ln(H2O)4(Ala)2]26+ dimeric cationic lanthanide complexes with both L- and D-alanine enantiomers was synthesized. The single-crystal X-ray diffraction at 100 and 292 K shows the formation of two types of dimers (I and II) in crystals. Between the dimer centers, the alanine molecules behave as bridging (μ2-O,O'-) and chelating bridging (μ2-O,O,O'-) ligands. The first type of bridge is present in dimers I, while both bridge forms can be observed in dimers II. The IR and vibrational circular dichroism (VCD) spectra of all L- and D-alanine complexes were registered in the 1750-1250 cm-1 range as KBr pellets. Despite all the studied complexes are exhibiting similar crystal structures, the spectra reveal correlations or trends with the Ln-O1 distances which exemplify the lanthanide contraction effect in the IR spectra. This is especially true for the positions and intensities of some IR bands. Unexpectedly, the ν(C=O) VCD bands are quite intense and their composed shapes reveal the inequivalence of the C=O vibrators in the unit cell which vary with the lanthanide. Unlike in the IR spectra, the ν(C=O) VCD band positions are only weakly correlated with the change of Ln and the VCD intensities at most show some trends. Nevertheless, this is the first observation of the lanthanide contraction effect in the VCD spectra. Generally, for the heavier lanthanides (Ln: Dy-Lu), the VCD band maxima are very close to each other and the mirror reflection of the band of two enantiomers is usually better than that of the lighter Lns. DFT calculations show that the higher the multiplicity the higher the stability of the system. Actually, the molecular geometry in crystals (at 100 K) is well predicted based on the highest-spin structures. Also, the simulated IR and VCD spectra strongly depend on the Ln electron configuration but the best overall agreement was reached for the Lu complex, which is the only system with a fully filled f-shell.
Collapse
Affiliation(s)
- Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (J.E.R.); (J.C.D.)
| | | | | |
Collapse
|
13
|
Krupová M, Kessler J, Bouř P. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. Chempluschem 2020; 85:561-575. [DOI: 10.1002/cplu.202000014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Mathematics and PhysicsCharles University Ke Karlovu 3 12116 Prague 2 Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
14
|
|