1
|
Argunov DA, Aladysheva US, Krylov VB, Nifantiev NE. Acid-Catalyzed Transformation of Pyranosides into Furanosides as a Tool for Preparation of Furanoside Synthetic Blocks. Org Lett 2024; 26:8090-8094. [PMID: 39269779 DOI: 10.1021/acs.orglett.4c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The importance of natural glycoconjugates containing furanoside residues causes a continued demand for the development of efficient methods for the synthesis of corresponding oligosaccharide derivatives to be used as molecular probes in glycobiological studies. Currently, the chemical synthesis of furanose-containing oligosaccharides often represents a significant challenge because of the lack of short, efficient, and reliable methods for the preparation of selectively substituted furanoside blocks. Herein, we report an easy protocol toward galactofuranose-containing molecules based on the unusual equilibrium between pyranoside and furanoside forms observed for a series of substituted galactosides. The method's utility is illustrated by the syntheses of furanoside-containing oligosaccharides related to the antigenic polysaccharides of Aspergillus fumigatus and Klebsiella pneumoniae O2ac.
Collapse
Affiliation(s)
- Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Uliana S Aladysheva
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Tokatly AI, Gerbst AG, Dmitrenok AS, Vinnitskiy DZ, Nifantiev NE. Synthesis and ab initio conformational investigation of a series of model sulfated α-L-iduronopyranosides. Carbohydr Res 2024; 538:109079. [PMID: 38493705 DOI: 10.1016/j.carres.2024.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Due to the all-axial orientation of the OH-groups in the 1C4 chair conformation considered standard for L-hexapyranosides, including l-iduronopyranoside - a component of many biologically and medically significant sulfated glycans, these monosaccharides can be anticipated to display unusual conformations upon the introduction of bulky and charged substituents. Herein we describe the synthesis of a series of iduronopyranoside derivatives with varying sulfation patterns, which were studied computationally using the DLPNO-MP2 approach and by means of analyzing their chemical shifts to ascertain the effects sulfation has on the conformation of the iduronopyranoside ring.
Collapse
Affiliation(s)
- Alexandra I Tokatly
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| | - Andrey S Dmitrenok
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry Z Vinnitskiy
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| |
Collapse
|
3
|
Gerbst AG, Krylov VB, Nifantiev NE. Computational and NMR Conformational Analysis of Galactofuranoside Cycles Presented in Bacterial and Fungal Polysaccharide Antigens. Front Mol Biosci 2021; 8:719396. [PMID: 34513924 PMCID: PMC8424007 DOI: 10.3389/fmolb.2021.719396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Unlike pyranoside cycles which are generally characterized by strictly defined conformational preferences, furanosides are flexible and may adopt a wide range of available conformations. During our previous studies, conformational changes of galactofuranoside cycles upon total sulfation were described computationally, using a simple Hartree–Fock (HF) method, and principal conformers of the 5-membered galactose ring were revealed. However, in the case of more complex disaccharide structures, it was found that this method and the widely applied DFT-B3LYP produced results that deviated from experimental evidence. In this study, other DFT functionals (PBE0 and double hybrid B2PLYP) along with RI-MP2 are employed to study the conformational behavior of the galactofuranoside ring. Reinvestigation of galactofuranosides with a lactic acid substituent at O-3 revealed that changes in the orientation of lactic acid residue at O-3 might induce conformational changes of the furanoside cycle. Such findings are important for further modeling of carbohydrate–protein interaction.
Collapse
Affiliation(s)
- Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| |
Collapse
|
4
|
Vo Y, Schwartz BD, Onagi H, Ward JS, Gardiner MG, Banwell MG, Nelms K, Malins LR. A Rapid and Mild Sulfation Strategy Reveals Conformational Preferences in Therapeutically Relevant Sulfated Xylooligosaccharides. Chemistry 2021; 27:9830-9838. [PMID: 33880824 DOI: 10.1002/chem.202100527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 01/31/2023]
Abstract
Although sulfated xylooligosaccharides are promising therapeutic leads for a multitude of afflictions, the structural complexity and heterogeneity of commercially deployed forms (e. g. Pentosan polysulfate 1) complicates their path to further clinical development. We describe herein the synthesis of the largest homogeneous persulfated xylooligomers prepared to date, comprising up to eight xylose residues, as standards for biological studies. Near quantitative sulfation was accomplished using a remarkably mild and operationally simple protocol which avoids the need for high temperatures and a large excess of the sulfating reagent. Moreover, the sulfated xylooligomer standards so obtained enabled definitive identification of a pyridinium contaminant in a sample of a commercially prepared Pentosan drug and provided significant insights into the conformational preferences of the constituent persulfated monosaccharide residues. As the spatial distribution of sulfates is a key determinant of the binding of sulfated oligosaccharides to endogenous targets, these findings have broad implications for the advancement of Pentosan-based treatments.
Collapse
Affiliation(s)
- Yen Vo
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Brett D Schwartz
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jas S Ward
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Martin G Banwell
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Keats Nelms
- Beta Therapeutics Pty. Ltd. Level 6, 121 Marcus Clarke Street, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
|
6
|
Gerbst AG, Krylov VB, Nifantiev NE. Conformational changes in common monosaccharides caused by per-O-sulfation. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Polysulfated carbohydrates play an important role in many biological processes because of their ability to bind to various protein receptors such as different growth factors, blood coagulation factors, adhesion lectins etc. Precise information about spatial organization of sulfated derivatives is of high demand for molecular modelling of such interactions as well as for understanding of the mechanism of pyranoside-into-furanoside rearrangement. In this review we summarize the changes recently revealed for the conformations of common pyranosides and furanosides upon total O-sulfation which were studied by means of NMR spectroscopy as well as molecular modelling. It was found that pentoses, being more flexible, undergo complete conformational chair inversion. Meanwhile, for hexoses the situation strongly depends on the monosaccharide configuration. Conformational changes are most pronounced in gluco-compounds though quantum chemical calculations helped to establish that no complete chair inversion occurred. In furanosides distortions of two types were observed: either the ring conformation or the conformation of the side chain changed. The presented data may be used for the analysis of chemical, physical and biological properties of sulfated carbohydrates.
Collapse
Affiliation(s)
- Alexey G. Gerbst
- Laboratory of Glycoconjugate Chemistry , N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russia
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry , N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry , N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russia
| |
Collapse
|
7
|
Gerbst AG, Krylov VB, Argunov DA, Petruk MI, Solovev AS, Dmitrenok AS, Nifantiev NE. Influence of per-O-sulfation upon the conformational behaviour of common furanosides. Beilstein J Org Chem 2019; 15:685-694. [PMID: 30931009 PMCID: PMC6423562 DOI: 10.3762/bjoc.15.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
The studies on the recently discovered pyranoside-into-furanoside rearrangement have led us to conformational investigations of furanosides upon their total sulfation. Experimental NMR data showed that in some cases drastic changes of the ring conformation occurred while sometimes only the conformation of the exocyclic C4-C5 linkage changed. Herein we describe a combined quantum chemical and NMR conformational investigation of three common monosaccharide furanosides as their propyl glycosides: α-mannose, β-glucose and β-galactose. Full exploration of the furanoside ring by means of ab initio calculations was performed and coupling constants were calculated for each of the low-energy conformers. The results demonstrated preferred trans-orientation of H4-H5 protons in the non-sulfated molecules which changed to gauche-orientation upon sulfation. The effect is less pronounced in the galactosides. For all the studied structures changes in the conformational distribution were revealed by quantum mechanical calculations, that explained the observed changes in intraring coupling constants occurring upon introduction of sulfates.
Collapse
Affiliation(s)
- Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Maksim I Petruk
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Arsenii S Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey S Dmitrenok
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
8
|
Krylov VB, Nifantiev NE. Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides. Curr Top Microbiol Immunol 2019; 425:1-16. [PMID: 31875266 DOI: 10.1007/82_2019_187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell wall of pathogenic fungi is highly important for the development of fungal infections and is the first cellular component to interact with the host immune system. The fungal cell wall is mainly built up of different polysaccharides representing ligands for pattern recognition receptors (PRRs) on immune cells and antibodies. Purified fungal polysaccharides are not easily available; in addition, they are structurally heterogenic and have wide molecular weight distribution that limits the possibility to use natural polysaccharides to assess the structure of their active determinants. The synthetic oligosaccharides of definite structure representing distinct polysaccharide fragments are indispensable tools for a variety of biological investigations and represent an advantageous alternative to natural polysaccharides. The attachment of a spacer group to these oligosaccharides permits their efficient transformation into immunogenic glycoconjugates as well as their immobilization on plates or microbeads. Herein, we summarize current information on synthetic availability of the variety of oligosaccharides related to main types of fungal cell wall components: galactomannan, α- and β-mannan, α- and β-(1 → 3)-glucan, chitin, chitosan, and others. These data are supplemented with published results of biochemical and immunological applications of synthetic oligosaccharides as molecular probes especially as the components of thematic glycoarrays suitable for characterization of anti-polysaccharide antibodies and cellular lectins or PRRs.
Collapse
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia.
| |
Collapse
|